Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nitriles as efficient electrolyte additives are widely used in high-voltage lithium-ion batteries. However, their working mechanisms are still mysterious, especially in practical high-voltage LiCoO2 pouch lithium-ion batteries. Herein, we adopt a tridentate ligand-containing 1,3,6-hexanetricarbonitrile (HTCN) as an effective electrolyte additive to shed light on the mechanism of stabilizing high-voltage LiCoO2 cathode (4.5 V) through nitriles. The LiCoO2/graphite pouch cells with the HTCN additive electrolyte possess superior cycling performance, 90% retention of the initial capacity after 800 cycles at 25 °C, and 72% retention after 500 cycles at 45 °C, which is feasible for practical application. Such an excellent cycling performance can be attributed to the stable interface: The HTCN molecules with strong electron-donating ability participate in the construction of cathode-electrolyte interphase (CEI) through coordinating with Co ions, which suppresses the decomposition of electrolyte and improves the structural stability of LiCoO2 during cycling. In summary, the work recognizes a coordinating-based interphase-forming mechanism as an effective strategy to optimize the performance of high voltage LiCoO2 cathode with appropriate electrolyte additives for practical pouch batteries.
Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.
Wang, L. L.; Chen, B. B.; Ma, J.; Cui, G. L.; Chen, L. Q. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chem. Soc. Rev. 2018, 47, 6505–6602.
Ceder, G.; Chiang, Y. M.; Sadoway, D. R.; Aydinol, M. K.; Jang, Y. I.; Huang, B. Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 1998, 392, 694–696.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
Zhang, X. D.; Yue, F. S.; Liang, J. Y.; Shi, J. L.; Li, H.; Guo, Y. G. Structure design of cathode electrodes for solid-state batteries: Challenges and progress. Small Struct. 2020, 1, 2000042.
Chen, Z. H.; Dahn, J. R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079–1090.
Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J. G.; Guo, F. M.; Wu, Y. A.; Rong, Y. C.; Kou, R. H.; Xiao, X. H. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943.
Zhang, J. N.; Li, Q. H.; Ouyang, C. Y.; Yu, X. Q.; Ge, M. Y.; Huang, X. J.; Hu, E. Y.; Ma, C.; Li, S. F.; Xiao, R. J. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603.
MacNeil, D. D.; Dahn, J. R. The reactions of Li0.5CoO2 with nonaqueous solvents at elevated temperatures. J. Electrochem. Soc. 2002, 149, A912–A919.
Mao, S. L.; Shen, Z. Y.; Zhang, W. D.; Wu, Q.; Wang, Z. Y.; Lu, Y. Y. Outside-in nanostructure fabricated on LiCoO2 surface for high-voltage lithium-ion batteries. Adv. Sci. 2022, 9, 2104841.
Su, Y. F.; Zhang, Q. Y.; Chen, L.; Bao, L. Y.; Lu, Y.; Chen, S.; Wu, F. Effects of ZrO2 coating on Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities. Acta Phys. Chim. Sin. 2021, 37, 2005062.
Zhang, S. D.; Liu, Y.; Qi, M. Y.; Cao, A. M. Localized surface doping for improved stability of high energy cathode materials. Acta Phys. Chim. Sin. 2021, 37, 2011007.
Qian, J. W.; Liu, L.; Yang, J. X.; Li, S. Y.; Wang, X.; Zhuang, H. L.; Lu, Y. Y. Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 2018, 9, 4918.
Klein, S.; Harte, P.; van Wickeren, S.; Borzutzki, K.; Röser, S.; Bärmann, P.; Nowak, S.; Winter, M.; Placke, T.; Kasnatscheew, J. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Rep. Phys. Sci. 2021, 2, 100521.
Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.
Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes-a critical review. Energy Environ. Sci. 2018, 11, 243–257.
Joshi, T.; Eom, K.; Yushin, G.; Fuller, T. F. Effects of dissolved transition metals on the electrochemical performance and SEI growth in lithium-ion batteries. J. Electrochem. Soc. 2014, 161, A1915–A1921.
Fan, X. L.; Wang, C. S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566.
Markevich, E.; Salitra, G.; Aurbach, D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries. ACS Energy Lett. 2017, 2, 1337–1345.
Chen, Y.; Zhao, W. M.; Zhang, Q. H.; Yang, G. Z.; Zheng, J. M.; Tang, W.; Xu, Q. J.; Lai, C. Y.; Yang, J. H.; Peng, C. X. Armoring LiNi1/3Co1/3Mn1/3O2 cathode with reliable fluorinated organic–inorganic hybrid interphase layer toward durable high rate battery. Adv. Funct. Mater. 2020, 30, 2000396.
Su, C. C.; He, M. N.; Amine, R.; Chen, Z. H.; Sahore, R.; Dietz Rago, N.; Amine, K. Cyclic carbonate for highly stable cycling of high voltage lithium metal batteries. Energy Storage Mater. 2019, 17, 284–292.
Yu, Z. A.; Yu, W. L.; Chen, Y. L.; Mondonico, L.; Xiao, X.; Zheng, Y.; Liu, F.; Hung, S. T.; Cui, Y.; Bao, Z. N. Tuning fluorination of linear carbonate for lithium-ion batteries. J. Electrochem. Soc. 2022, 169, 040555.
Xiao, P. T.; Zhao, Y.; Piao, Z. H.; Li, B. H.; Zhou, G. M.; Cheng, H. M. A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li||NCM811 cells with a wide temperature range of 100 °C. Energy Environ. Sci. 2022, 15, 2435–2444.
Aurbach, D.; Markevich, E.; Salitra, G. High energy density rechargeable batteries based on Li metal anodes. The role of unique surface chemistry developed in solutions containing fluorinated organic Co-solvents. J. Am. Chem. Soc. 2021, 143, 21161–21176.
Tan, S.; Shadike, Z.; Li, J. Z.; Wang, X. L.; Yang, Y.; Lin, R. Q.; Cresce, A.; Hu, J. T.; Hunt, A.; Waluyo, I. et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 2022, 7, 484–494.
Liu, Q. Y.; Yang, G. J.; Liu, S.; Han, M.; Wang, Z. X.; Chen, L. Q. Trimethyl borate as film-forming electrolyte additive to improve high-voltage performances. ACS Appl. Mater. Interfaces 2019, 11, 17435–17443.
Li, Y. C.; Wan, S.; Veith, G. M.; Unocic, R. R.; Paranthaman, M. P.; Dai, S.; Sun, X. G. A novel electrolyte salt additive for lithium-ion batteries with voltages greater than 4.7 V. Adv. Energy Mater. 2017, 7, 1601397.
Li, Y. C.; Veith, G. M.; Browning, K. L.; Chen, J. H.; Hensley, D. K.; Paranthaman, M. P.; Dai, S.; Sun, X. G. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries. Nano Energy 2017, 40, 9–19.
Yue, H. Y.; Yang, Y. E.; Xiao, Y.; Dong, Z. Y.; Cheng, S. G.; Yin, Y. H.; Ling, C.; Yang, W. G.; Yu, Y. H.; Yang, S. T. Boron additive passivated carbonate electrolytes for stable cycling of 5 V lithium-metal batteries. J. Mater. Chem. A 2019, 7, 594–602.
Madec, L.; Xia, J.; Petibon, R.; Nelson, K. J.; Sun, J. P.; Hill, I. G.; Dahn, J. R. Effect of sulfate electrolyte additives on LiNi1/3Mn1/3Co1/3O2/graphite pouch cell lifetime: Correlation between XPS surface studies and electrochemical test results. J. Phys. Chem. C 2014, 118, 29608–29622.
Xu, G. J.; Pang, C. G.; Chen, B. B.; Ma, J.; Wang, X.; Chai, J. C.; Wang, Q. F.; An, W. Z.; Zhou, X. H.; Cui, G. L. et al. Prescribing functional additives for treating the poor performances of high-voltage (5 V-class) LiNi0.5Mn1. 5O4/MCMB Li-ion batteries. Adv. Energy Mater. 2018, 8, 1701398.
Lin, Y. L.; Xu, M. Q.; Wu, S. P.; Tian, Y. Y.; Cao, Z. G.; Xing, L. D.; Li, W. S. Insight into the mechanism of improved interfacial properties between electrodes and electrolyte in the graphite/LiNi0.6Mn0.2Co0.2O2 cell via incorporation of 4-propyl-[1,3,2]dioxathiolane-2,2-dioxide (PDTD). ACS Appl. Mater. Interfaces 2018, 10, 16400–16409.
Kim, Y. S.; Kim, T. H.; Lee, H.; Song, H. K. Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries. Energy Environ. Sci. 2011, 4, 4038–4045.
Lee, S. H.; Hwang, J. Y.; Park, S. J.; Park, G. T.; Sun, Y. K. Adiponitrile (C6H8N2): A new bi-functional additive for high-performance Li-metal batteries. Adv. Funct. Mater. 2019, 29, 1902496.
Yang, X. R.; Lin, M.; Zheng, G. R.; Wu, J.; Wang, X. S.; Ren, F. C.; Zhang, W. G.; Liao, Y.; Zhao, W. M.; Zhang, Z. R. et al. Enabling stable high-voltage LiCoO2 operation by using synergetic interfacial modification strategy. Adv. Funct. Mater. 2020, 30, 2004664.
Ruan, D. G.; Chen, M.; Wen, X. Y.; Li, S. Q.; Zhou, X. G.; Che, Y. X.; Chen, J. K.; Xiang, W. J.; Li, S. L.; Wang, H. et al. In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive. Nano Energy 2021, 90, 106535.
Fu, A.; Lin, J. D.; Zhang, Z. F.; Xu, C. J.; Zou, Y.; Liu, C. Y.; Yan, P. F.; Wu, D. Y.; Yang, Y.; Zheng, J. M. Synergistical stabilization of Li metal anodes and LiCoO2 cathodes in high-voltage Li∥LiCoO2 batteries by potassium selenocyanate (KSeCN) additive. ACS Energy Lett. 2022, 7, 1364–1373.
Ping, P.; Wang, Q. S.; Sun, J. H.; Xia, X.; Dahn, J. R. Studies of the effect of triphenyl phosphate on positive electrode symmetric Li-ion cells. J. Electrochem. Soc. 2012, 159, A1467–A1473.
Liao, B.; Li, H. Y.; Xu, M. Q.; Xing, L. D.; Liao, Y. H.; Ren, X. B.; Fan, W. Z.; Yu, L.; Xu, K.; Li, W. S. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 2018, 8, 1800802.
Zhu, X. M.; Jiang, X. Y.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery. Electrochim. Acta 2015, 165, 67–71.
Zhao, W. M.; Zheng, B. Z.; Liu, H. D.; Ren, F. C.; Zhu, J. P.; Zheng, G. R.; Chen, S. J.; Liu, R.; Yang, X. R.; Yang, Y. Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance. Nano Energy 2019, 63, 103815.
Yang, X. R.; Chen, J. W.; Zheng, Q. F.; Tu, W. Q.; Xing, L. D.; Liao, Y. H.; Xu, M. Q.; Huang, Q. M.; Cao, G. Z.; Li, W. S. Mechanism of cycling degradation and strategy to stabilize a nickel-rich cathode. J. Mater. Chem. A 2018, 6, 16149–16163.
Ye, C. C.; Tu, W. Q.; Yin, L. M.; Zheng, Q. F.; Wang, C.; Zhong, Y. T.; Zhang, Y. G.; Huang, Q. M.; Xu, K.; Li, W. S. Converting detrimental HF in electrolytes into a highly fluorinated interphase on cathodes. J. Mater. Chem. A 2018, 6, 17642–17652.
Ma, Q. T.; Zhang, X. Y.; Wang, A. X.; Xia, Y. Y.; Liu, X. J.; Luo, J. Y. Stabilizing solid electrolyte interphases on both anode and cathode for high areal capacity, high-voltage lithium metal batteries with high Li utilization and lean electrolyte. Adv. Funct. Mater. 2020, 30, 2002824.
Zhi, H. Z.; Xing, L. D.; Zheng, X. W.; Xu, K.; Li, W. S. Understanding how nitriles stabilize electrolyte/electrode interface at high voltage. J. Phys. Chem. Lett. 2017, 8, 6048–6052.
Xian, F.; Li, J. D.; Hu, Z. L.; Zhou, Q.; Wang, C.; Lu, C. L.; Zhang, Z. Y.; Dong, S. M.; Mou, C. B.; Cui, G. L. Investigation of the cathodic interfacial stability of a nitrile electrolyte and its performance with a high-voltage LiCoO2 cathode. Chem. Commun. 2020, 56, 4998–5001.