Graphical Abstract

Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides. We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe2As2 upon potassium intercalation using molecular beam epitaxy. The in-situ low-temperature scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic
Takahashi, H.; Igawa, K.; Arii, K.; Kamihara, Y.; Hirano, M.; Hosono, H. Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs. Nature 2008, 453, 376–378.
Ren, Z. A.; Lu, W.; Yang, J.; Yi, W.; Shen, X. L.; Li, Z. C.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhou, F. et al. Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1−xFx] FeAs. Chin. Phys. Lett. 2008, 25, 2215–2216.
Hsu, F. C.; Luo, J. Y.; Yeh, K. W.; Chen, T. K.; Huang, T. W.; Wu, P. M.; Lee, Y. C.; Huang, Y. L.; Chu, Y. Y.; Yan, D. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl. Acad. Sci. USA 2008, 105, 14262–14264.
McQueen, T. M.; Huang, Q.; Ksenofontov, V.; Felser, C.; Xu, Q.; Zandbergen, H.; Hor, Y. S.; Allred, J.; Williams, A. J.; Qu, D. et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 2009, 79, 014522.
Medvedev, S.; McQueen, T. M.; Troyan, I. A.; Palasyuk, T.; Eremets, M. I.; Cava, R. J.; Naghavi, S.; Casper, F.; Ksenofontov, V.; Wortmann, G. et al. Electronic and magnetic phase diagram of β-Fe1.01Se with superconductivity at 36. 7 K under pressure. Nat. Mater. 2009, 8, 630–633.
Garbarino, G.; Sow, A.; Lejay, P.; Sulpice, A.; Toulemonde, P.; Mezouar, M.; Núñez-Regueiro, M. High-temperature superconductivity (Tc onset at 34 K) in the high-pressure orthorhombic phase of FeSe. Europhys. Lett. 2009, 86, 27001.
Hanzawa, K.; Sato, H.; Hiramatsu, H.; Kamiya, T.; Hosono, H. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K. Proc. Natl. Acad. Sci. USA 2016, 113, 3986–3990.
Shiogai, J.; Ito, Y.; Mitsuhashi, T.; Nojima, T.; Tsukazaki, A. Electric-field-induced superconductivity in electrochemically etched ultrathin FeSe films on SrTiO3 and MgO. Nat. Phys. 2016, 12, 42–46.
Lin, P. H.; Texier, Y.; Taleb-Ibrahimi, A.; Le Fèvre, P.; Bertran, F.; Giannini, E.; Grioni, M.; Brouet, V. Nature of the bad metallic behavior of Fe1.06Te inferred from its evolution in the magnetic state. Phys. Rev. Lett. 2013, 111, 217002.
Enayat, M.; Sun, Z. X.; Singh, U. R.; Aluru, R.; Schmaus, S.; Yaresko, A.; Liu, Y.; Lin, C. T.; Tsurkan, V.; Loidl, A. et al. Real-space imaging of the atomic-scale magnetic structure of Fe1+yTe. Science 2014, 345, 653–656.
Trainer, C.; Yim, C. M.; Heil, C.; Giustino, F.; Croitori, D.; Tsurkan, V.; Loidl, A.; Rodriguez, E. E.; Stock, C.; Wahl, P. Manipulating surface magnetic order in iron telluride. Sci. Adv. 2019, 5, eaav3478.
Nie, Y. F.; Telesca, D.; Budnick, J. I.; Sinkovic, B.; Ramprasad, R.; Wells, B. O. Superconductivity and properties of FeTeOx films. J. Phys. Chem. Solids 2011, 72, 426–429.
Zhang, Z. T.; Yang, Z. R.; Lu, W. J.; Chen, X. L.; Li, L.; Sun, Y. P.; Xi, C. Y.; Ling, L. S.; Zhang, C. J.; Pi, L. et al. Superconductivity in Fe1.05Te:Ox single crystals. Phys. Rev. B 2013, 88, 214511.
Hosono, H.; Kuroki, K. Iron-based superconductors: Current status of materials and pairing mechanism. Phys. C:Supercond. Appl. 2015, 514, 399–422.
Wu, Y. P.; Zhao, D.; Wang, A. F.; Wang, N. Z.; Xiang, Z. J.; Luo, X. G.; Wu, T.; Chen, X. H. Emergent Kondo lattice behavior in iron-based superconductors AFe2As2 (A = K, Rb, Cs). Phys. Rev. Lett. 2016, 116, 147001.
Wang, Q. Y.; Li, Z.; Zhang, W. H.; Zhang, Z. C.; Zhang, J. S.; Li, W.; Ding, H.; Ou, Y. B.; Deng, P.; Chang, K. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3. Chin. Phys. Lett. 2012, 29, 037402.
Zhang, W. H.; Sun, Y.; Zhang, J. S.; Li, F. S.; Guo, M. H.; Zhao, Y. F.; Zhang, H. M.; Peng, J. P.; Xing, Y.; Wang, H. C. et al. Direct observation of high-temperature superconductivity in one-unit-cell FeSe films. Chin. Phys. Lett. 2014, 31, 017401.
Lee, J. J.; Schmitt, F. T.; Moore, R. G.; Johnston, S.; Cui, Y. T.; Li, W.; Yi, M.; Liu, Z. K.; Hashimoto, M.; Zhang, Y. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3. Nature 2014, 515, 245–248.
Song, Q.; Yu, T. L.; Lou, X.; Xie, B. P.; Xu, H. C.; Wen, C. H. P.; Yao, Q.; Zhang, S. Y.; Zhu, X. T.; Guo, J. D. et al. Evidence of cooperative effect on the enhanced superconducting transition temperature at the FeSe/SrTiO3 interface. Nat. Commun. 2019, 10, 758.
Gong, G. M.; Yang, H. H.; Zhang, Q. H.; Ding, C.; Zhou, J. S.; Chen, Y. J.; Meng, F. Q.; Zhang, Z. Y.; Dong, W. F.; Zheng, F. W. et al. Oxygen vacancy modulated superconductivity in monolayer FeSe on SrTiO3−δ. Phys. Rev. B 2019, 100, 224504.
Tan, S. Y.; Zhang, Y.; Xia, M.; Ye, Z. R.; Chen, F.; Xie, X.; Peng, R.; Xu, D. F.; Fan, Q.; Xu, H. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nat. Mater. 2013, 12, 634–640.
Zhang, S. Y.; Guan, J. Q.; Jia, X.; Liu, B.; Wang, W. H.; Li, F. S.; Wang, L. L.; Ma, X. C.; Xue, Q. K.; Zhang, J. D. et al. Role of SrTiO3 phonon penetrating into thin FeSe films in the enhancement of superconductivity.
Sun, Y.; Zhang, W. H.; Xing, Y.; Li, F. S.; Zhao, Y. F.; Xia, Z. C.; Wang, L. L.; Ma, X. C.; Xue, Q. K.; Wang, J. High temperature superconducting FeSe films on SrTiO3 substrates. Sci. Rep. 2014, 4, 6040.
Zhang, Z. C.; Wang, Y. H.; Song, Q.; Liu, C.; Peng, R.; Moler, K. A.; Feng, D. L.; Wang, Y. Y. Onset of the Meissner effect at 65 K in FeSe thin film grown on Nb-doped SrTiO3 substrate. Sci. Bull. 2015, 60, 1301–1304.
Xu, Y.; Rong, H. T.; Wang, Q. Y.; Wu, D. S.; Hu, Y.; Cai, Y. Q.; Gao, Q.; Yan, H. T.; Li, C.; Yin, C. H. et al. Spectroscopic evidence of superconductivity pairing at 83 K in single-layer FeSe/SrTiO3 films. Nat. Commun. 2021, 12, 2840.
Liu, C.; Zheng, F. W.; Shen, L.; Liao, M. H.; Wu, R.; Gong, G. M.; Ding, C.; Yang, H. H.; Li, W.; Song, C. L. et al. Anti-PbO-type CoSe film: A possible analog to FeSe superconductors. Supercond. Sci. Technol. 2018, 31, 115011.
Ding, C.; Gong, G. M.; Liu, Y. Z.; Zheng, F. W.; Zhang, Z. Y.; Yang, H. H.; Li, Z.; Xing, Y.; Ge, J.; He, K. et al. Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3 (001). ACS Nano 2019, 13, 10434–10439.
Chang, K.; Deng, P.; Zhang, T.; Lin, H. C.; Zhao, K.; Ji, S. H.; Wang, L. L.; He, K.; Ma, X. C.; Chen, X. et al. Molecular beam epitaxy growth of superconducting LiFeAs film on SrTiO3 (001) substrate. Europhys. Lett. 2015, 109, 28003.
Kang, J. H.; Xie, L.; Wang, Y.; Lee, H.; Campbell, N.; Jiang, J. Y.; Ryan, P. J.; Keavney, D. J.; Lee, J. W.; Kim, T. H. et al. Control of epitaxial BaFe2As2 atomic configurations with substrate surface terminations. Nano Lett. 2018, 18, 6347–6352.
Tang, C. J.; Zhang, D.; Zang, Y. Y.; Liu, C.; Zhou, G. Y.; Li, Z.; Zheng, C.; Hu, X. P.; Song, C. L.; Ji, S. H. et al. Superconductivity dichotomy in K-coated single and double unit cell FeSe films on SrTiO3.
Zhang, Z. M.; Cai, M.; Li, R.; Meng, F. Q.; Zhang, Q. H.; Gu, L.; Ye, Z. J.; Xu, G.; Fu, Y. S.; Zhang, W. H. Controllable synthesis and electronic structure characterization of multiple phases of iron telluride thin films. Phys. Rev. Mater. 2020, 4, 125003.
Zhang, L.; Singh, D. J.; Du, M. H. Density functional study of excess Fe in Fe1+xTe: Magnetism and doping. Phys. Rev. B 2009, 79, 012506.
Gao, M.; Ma, F. J.; Lu, Z. Y.; Xiang, T. Surface structures of ternary iron arsenides AFe2As2 (A = Ba, Sr, or Ca). Phys. Rev. B 2010, 81, 193409.
Li, A.; Yin, J. X.; Wang, J. H.; Wu, Z.; Ma, J. H.; Sefat, A. S.; Sales, B. C.; Mandrus, D. G.; McGuire, M. A.; Jin, R. et al. Surface terminations and layer-resolved tunneling spectroscopy of the 122 iron pnictide superconductors. Phys. Rev. B 2019, 99, 134520.
Yin, J. X.; Wu, X. X.; Li, J.; Wu, Z.; Wang, J. H.; Ting, C. S.; Hor, P. H.; Liang, X. J.; Zhang, C. L.; Dai, P. C. et al. Orbital selectivity of layer-resolved tunneling in the iron-based superconductor Ba0.6K0. 4Fe2As2. Phys. Rev. B 2020, 102, 054515.
Sato, T.; Nakayama, K.; Sekiba, Y.; Richard, P.; Xu, Y. M.; Souma, S.; Takahashi, T.; Chen, G. F.; Luo, J. L.; Wang, N. L. et al. Band structure and fermi surface of an extremely overdoped iron-based superconductor KFe2As2. Phys. Rev. Lett. 2009, 103, 047002.
Xu, N.; Richard, P.; Shi, X.; van Roekeghem, A.; Qian, T.; Razzoli, E.; Rienks, E.; Chen, G. F.; Ieki, E.; Nakayama, K. et al. Possible nodal superconducting gap and Lifshitz transition in heavily hole-doped Ba0.1K0.9Fe2As2.
Hardy, F.; Böhmer, A. E.; Aoki, D.; Burger, P.; Wolf, T.; Schweiss, P.; Heid, R.; Adelmann, P.; Yao, Y. X.; Kotliar, G. et al. Evidence of strong correlations and coherence−incoherence crossover in the iron pnictide superconductor KFe2As2. Phys. Rev. Lett. 2013, 111, 027002.
Tafti, F. F.; Juneau-Fecteau, A.; Delage, M. È.; René de Cotret, S.; Reid, J. P.; Wang, A. F.; Luo, X. G.; Chen, X. H.; Doiron-Leyraud, N.; Taillefer, L. Sudden reversal in the pressure dependence of Tc in the iron-based superconductor KFe2As2. Nat. Phys. 2013, 9, 349–352.
Eilers, F.; Grube, K.; Zocco, D. A.; Wolf, T.; Merz, M.; Schweiss, P.; Heid, R.; Eder, R.; Yu, R.; Zhu, J. X. et al. Strain-driven approach to quantum criticality in AFe2As2 with A= K, Rb, and Cs. Phys. Rev. Lett. 2016, 116, 237003.
Backes, S.; Jeschke, H. O.; Valentí, R. Microscopic nature of correlations in multiorbital AFe2As2 (A = K, Rb, Cs): Hund's coupling versus Coulomb repulsion. Phys. Rev. B 2015, 92, 195128.
Nakajima, Y.; Wang, R. X.; Metz, T.; Wang, X. F.; Wang, L. M.; Cynn, H.; Weir, S. T.; Jeffries, J. R.; Paglione, J. High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe2As2 under high pressure.
Wang, B. S.; Matsubayashi, K.; Cheng, J. G.; Terashima, T.; Kihou, K.; Ishida, S.; Lee, C. H.; Iyo, A.; Eisaki, H.; Uwatoko, Y. Absence of superconductivity in the collapsed tetragonal phase of KFe2As2 under hydrostatic pressure.
Shen, S. D.; Zhang, X. W.; Wo, H. L.; Shen, Y.; Feng, Y.; Schneidewind, A.; Čermák, P.; Wang, W. B.; Zhao, J. Neutron spin resonance in the heavily hole-doped KFe2As2 superconductor. Phys. Rev. Lett. 2020, 124, 017001.
Mizuguchi, Y.; Hara, Y.; Deguchi, K.; Tsuda, S.; Yamaguchi, T.; Takeda, K.; Kotegawa, H.; Tou, H.; Takano, Y. Anion height dependence of Tc for the Fe-based superconductor. Supercond. Sci. Technol. 2010, 23, 054013.
Takeda, S.; Ueda, S.; Yamagishi, T.; Agatsuma, S.; Takano, S.; Mitsuda, A.; Naito, M. Molecular beam epitaxy growth of superconducting Sr1–xKxFe2As2 and Ba1–xKxFe2As2. Appl. Phys. Express 2010, 3, 093101.
Ueda, S.; Yamagishi, T.; Takeda, S.; Agatsuma, S.; Takano, S.; Mitsuda, A.; Naito, M. MBE growth of Fe-based superconducting films. Phys. C:Supercond. Appl. 2011, 471, 1167–1173.
Yamagishi, T.; Ueda, S.; Takeda, S.; Takano, S.; Mitsuda, A.; Naito, M. A study of the doping dependence of Tc in Ba1–xKxFe2As2 and Sr1–xKxFe2As2 films grown by molecular beam epitaxy. Phys. C:Supercond. Appl. 2011, 471, 1177–1180.
Lee, S.; Jiang, J.; Zhang, Y.; Bark, C. W.; Weiss, J. D.; Tarantini, C.; Nelson, C. T.; Jang, H. W.; Folkman, C. M.; Baek, S. H. et al. Template engineering of Co-doped BaFe2As2 single-crystal thin films. Nat. Mater. 2010, 9, 397–402.