AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Tailoring charge affinity, dielectric property, and band gap of bacterial cellulose paper by multifunctional Ti2NbO7 nanosheets for improving triboelectric nanogenerator performance

Saichon Sriphan1,2Utchawadee Pharino2Thitirat Charoonsuk2,3Phieraya Pulphol2,3Phakkhananan Pakawanit4Orawan Khamman5Wanwilai Vittayakorn2,7Naratip Vittayakorn2,6,7( )Tosapol Maluangnont2,7
Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
Advanced Material Research Unit, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Department of Materials Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima 30000, Thailand
Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
Department of Chemistry, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Electroceramics Research Laboratory, College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand
Show Author Information

Graphical Abstract

This work presents the method to regulate the electronic band diagram of the bacterial cellulose (BC) triboelectric nanogenerator (TENG) by incorporation of semiconducting/dielectric single crystal-like Ti2NbO7 nanosheets (NSs). The present Ti2NbO7 NSs/BC TENG can produce a large number of triboelectric charges even when paired with aluminum which is adjacent in the triboelectric series.

Abstract

Transparent, flexible, and high-performance triboelectric nanogenerator (TENG) from nature-derived materials are required for sustainable society development. However, low triboelectricity from natural material is generally observed. Tunable electronic band diagram (EBD) through facile manipulation is one of the efficient methods to promote the TENG output, requiring fundamental, in depth understanding. Herein, we employed the high quality, single crystal-like Ti2NbO7 nanosheets (NSs) with dual dielectric and semiconducting properties as filler for bacterial cellulose (BC)-based TENG. Several techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), ultraviolet–visible (UV–vis) absorption, energy dispersive X-ray spectroscopy (EDS), and synchrotron radiation X-ray tomographic microscopy (SRXTM) were applied to characterize the long-range structure, microstructure, optical properties, elemental composition, and three-dimensional (3D) distribution of components in the composites. The semi-transparent and flexible 5 vol.% Ti2NbO7 NSs/BC preserved the integrity of cellulose, contained well-dispersed nanosheets, reduced optical band gap (4.20 vs. 5.75 eV for BC), and increased surface roughness. The dielectric permittivity and conductivity increased with nanosheets content. Adding negatively-charged Ti2NbO7 NSs could regulate the charge affinity of BC composite via shifting of Fermi energy over that of Al. It is found that adding 5 vol.% NSs into the BC film improved electrical outputs (~ 36 V and ~ 8.8 μA), which are 2–4 times higher than that of pure BC, even when paired with Al which lies adjacent in triboelectric series. Our work demonstrated the method to enhance BC-based TENG performance through EBD regulation using multifunctional Ti2NbO7 NSs.

Electronic Supplementary Material

Video
12274_2022_4957_MOESM2_ESM.mp4
Download File(s)
12274_2022_4957_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Alanne, K.; Cao, S. L. An overview of the concept and technology of ubiquitous energy. Appl. Energy 2019, 238, 284–302.

[2]

Karan, S. K.; Maiti, S.; Lee, J. H.; Mishra, Y. K.; Khatua, B. B.; Kim, J. K. Recent advances in self-powered tribo-/piezoelectric energy harvesters: All-in-one package for future smart technologies. Adv. Funct. Mater. 2020, 30, 2004446.

[3]

Sriphan, S.; Vittayakorn, N. Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. J. Sci.: Adv. Mater. Devices 2022, 7, 100461.

[4]

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

[5]

Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang, Q.; Gao, F. F.; Zhao, X.; Zhang, Z.; Zhang, Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

[6]

Zhou, L. L.; Liu, D.; Wang, J.; Wang, Z. L. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction 2020, 8, 481–506.

[7]

Li, M.; Jie, Y.; Shao, L. H.; Guo, Y. L.; Cao, X.; Wang, N.; Wang, Z. L. All-in-one cellulose based hybrid tribo/piezoelectric nanogenerator. Nano Res. 2019, 12, 1831–1835.

[8]

Charoonsuk, T.; Pongampai, S.; Pakawanit, P.; Vittayakorn, N. Achieving a highly efficient chitosan-based triboelectric nanogenerator via adding organic proteins: Influence of morphology and molecular structure. Nano Energy 2021, 89, 106430.

[9]

Wang, X. D.; Yao, C. H.; Wang, F.; Li, Z. D. Cellulose-based nanomaterials for energy applications. Small 2018, 14, 1704152.

[10]

Zhao, Z. H.; Zhou, L. L.; Li, S. X.; Liu, D.; Li, Y. H.; Gao, Y. K.; Liu, Y. B.; Dai, Y. J.; Wang, J.; Wang, Z. L. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 2021, 12, 4686.

[11]

Liu, L.; Zhou, L. L.; Zhang, C. G.; Zhao, Z. H.; Li, S. X.; Li, X. Y.; Yin, X.; Wang, J.; Wang, Z. L. A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering. J. Mater. Chem. A 2021, 9, 21357–21365.

[12]

Shao, Y.; Feng, C. P.; Deng, B. W.; Yin, B.; Yang, M. B. Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy 2019, 62, 620–627.

[13]

Shi, K. M.; Zou, H. Y.; Sun, B.; Jiang, P. K.; He, J. L.; Huang, X. Y. Dielectric modulated cellulose paper/PDMS-based triboelectric nanogenerators for wireless transmission and electropolymerization applications. Adv. Funct. Mater. 2020, 30, 1904536.

[14]

Cui, S. N.; Zhou, L. L.; Liu, D.; Li, S. X.; Liu, L.; Chen, S. Y.; Zhao, Z. H.; Yuan, W.; Wang, Z. L.; Wang, J. Improving performance of triboelectric nanogenerators by dielectric enhancement effect. Matter 2022, 5, 180–193.

[15]

Kuang, H. Z.; Li, Y. B.; Huang, S. Y.; Shi, L.; Zhou, Z.; Gao, C. X.; Zeng, X. Y.; Pandey, R.; Wang, X. Z.; Dong, S. R. et al. Piezoelectric boron nitride nanosheets for high performance energy harvesting devices. Nano Energy 2021, 80, 105561.

[16]

Shi, L.; Jin, H.; Dong, S. R.; Huang, S. Y.; Kuang, H. Z.; Xu, H. S.; Chen, J. K.; Xuan, W. P.; Zhang, S. M.; Li, S. J. et al. High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 2021, 80, 105599.

[17]

Kar, E.; Bose, N.; Dutta, B.; Banerjee, S.; Mukherjee, N.; Mukherjee, S. 2D SnO2 nanosheet/PVDF composite based flexible, self-cleaning piezoelectric energy harvester. Energy Convers. Manag. 2019, 184, 600–608.

[18]

Wu, T.; Song, Y. H.; Shi, Z. Q.; Liu, D. N.; Chen, S. L.; Xiong, C. X.; Yang, Q. L. High-performance nanogenerators based on flexible cellulose nanofibril/MoS2 nanosheet composite piezoelectric films for energy harvesting. Nano Energy 2021, 80, 105541.

[19]

Sriphan, S.; Charoonsuk, T.; Khaisaat, S.; Sawanakarn, O.; Pharino, U.; Phunpruch, S.; Maluangnont, T.; Vittayakorn, N. Flexible capacitive sensor based on 2D-titanium dioxide nanosheets/bacterial cellulose composite film. Nanotechnology 2021, 32, 155502.

[20]

Sriphan, S.; Charoonsuk, T.; Maluangnont, T.; Pakawanit, P.; Rojviriya, C.; Vittayakorn, N. Multifunctional nanomaterials modification of cellulose paper for efficient triboelectric nanogenerators. Adv. Mater. Technol. 2020, 5, 2000001.

[21]

Sriphan, S.; Charoonsuk, T.; Maluangnont, T.; Vittayakorn, N. High-performance hybridized composited-based piezoelectric and triboelectric nanogenerators based on BaTiO3/PDMS composite film modified with Ti0.8O2 nanosheets and silver nanopowders cofillers. ACS Appl. Energy Mater. 2019, 2, 3840–3850.

[22]

Osada, M.; Ebina, Y.; Funakubo, H.; Yokoyama, S.; Kiguchi, T.; Takada, K.; Sasaki, T. High-κ dielectric nanofilms fabricated from titania nanosheets. Adv. Mater. 2006, 18, 1023–1027.

[23]

Osada, M.; Akatsuka, K.; Ebina, Y.; Funakubo, H.; Ono, K.; Takada, K.; Sasaki, T. Robust high-κ response in molecularly thin perovskite nanosheets. ACS Nano 2010, 4, 5225–5232.

[24]

Osada, M.; Takanashi, G.; Li, B. W.; Akatsuka, K.; Ebina, Y.; Ono, K.; Funakubo, H.; Takada, K.; Sasaki, T. Controlled polarizability of one-nanometer-thick oxide nanosheets for tailored, high-κ nanodielectrics. Adv. Funct. Mater. 2011, 21, 3482–3487.

[25]

Osada, M.; Sasaki, T. Exfoliated oxidenanosheets: New solution to nanoelectronics. J. Mater. Chem. 2009, 19, 2503–2511.

[26]

Maluangnont, T.; Matsuba, K.; Geng, F. X.; Ma, R. Z.; Yamauchi, Y.; Sasaki, T. Osmotic swelling of layered compounds as a route to producing high-quality two-dimensional materials. A comparative study of tetramethylammonium versus tetrabutylammonium cation in a lepidocrocite-type titanate. Chem. Mater. 2013, 25, 3137–3146.

[27]

Yao, C. H.; Yin, X.; Yu, Y. H.; Cai, Z. Y.; Wang, X. D. Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 2017, 27, 1700794.

[28]

Xu, C.; Zhang, B. B.; Wang, A. C.; Zou, H. Y.; Liu, G. L.; Ding, W. B.; Wu, C. S.; Ma, M.; Feng, P. Z.; Lin, Z. Q. et al. Contact-electrification between two identical materials: Curvature effect. ACS Nano 2019, 13, 2034–2041.

[29]

Kim, H. S.; Kim, D. Y.; Kim, J. E.; Kim, J. H.; Kong, D. S.; Murillo, G.; Lee, G. H.; Park, J. Y.; Jung, J. H. Ferroelectric-polymer-enabled contactless electric power generation in triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1905816.

[30]

Zhou, J.; Zhang, J. N.; Deng, Y. P.; Zhao, H.; Zhang, P. Y.; Fu, S. B.; Xu, X.; Li, H. Defect-mediated work function regulation in graphene film for high-performing triboelectric nanogenerators. Nano Energy 2022, 99, 107411.

[31]

Kim, I.; Jeon, H.; Kim, D.; You, J.; Kim, D. All-in-one cellulose based triboelectric nanogenerator for electronic paper using simple filtration process. Nano Energy 2018, 53, 975–981.

[32]

Hervieu, M.; Raveau, B. A layer structure: The titanoniobate CsTi2NbO7. J. Solid State Chem. 1980, 32, 161–165.

[33]

Pan, S. H.; Zhang, Z. N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 2019, 7, 2–17.

[34]

Kim, Y. J.; Lee, J.; Park, S.; Park, C.; Park, C.; Choi, H. J. Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators. RSC Adv. 2017, 7, 49368–49373.

[35]

Wang, M. J.; Xu, J. S.; Zhang, X. B.; Fan, Z. C.; Tong, Z. W. Fabrication of a new self-assembly compound of CsTi2NbO7 with cationic cobalt porphyrin utilized as an ascorbic acid sensor. Appl. Biochem. Biotechnol. 2018, 185, 834–846.

[36]
Desrues, J.; Viggiani, G.; Bésuelle, P. Advances in X-Ray Tomography for Geomaterials; ISTE: London, 2006.
[37]
Limaye, L. Drishti: A volume exploration and presentation tool. In Proceedings of the SPIE 8506 Developments in X-Ray Tomography VIII, San Diego, 2012.
[38]

Kim, H. J.; Yim, E. C.; Kim, J. H.; Kim, S. J.; Park, J. Y.; Oh, I. K. Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 2017, 33, 130–137.

[39]

Wang, S. S.; Han, Y. H.; Ye, Y. X.; Shi, X. X.; Xiang, P.; Chen, D. L.; Li, M. Physicochemical characterization of high-quality bacterial cellulose produced by Komagataeibacter sp. strain W1 and identification of the associated genes in bacterial cellulose production. RSC Adv. 2017, 7, 45145–45155.

[40]

Dey, P. P.; Khare, A. Tailoring of stoichiometry and band-tail emission in PLD a-SiC thin films by varying He deposition pressure. SN Appl. Sci. 2020, 2, 1059.

[41]

Xu, P. T.; Milstein, T. J.; Mallouk, T. E. Flat-band potentials of molecularly thin metal oxide nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11539–11547.

[42]

Shibata, T.; Takanashi, G.; Nakamura, T.; Fukuda, K.; Ebina, Y.; Sasaki, T. Titanoniobate and niobate nanosheet photocatalysts: Superior photoinduced hydrophilicity and enhanced thermal stability of unilamellar Nb3O8 nanosheet. Energy Environ. Sci. 2011, 4, 535–542.

[43]

Plermjai, K.; Boonyarattanakalin, K.; Mekprasart, W.; Phoohinkong, W.; Pavasupree, S.; Pecharapa, W. Optical absorption and ftir study of cellulose/TiO2 hybrid composites. Chiang Mai J. Sci. 2019, 46, 618–625.

[44]

Charoonsuk, T.; Sriphan, S.; Pulphol, P.; Vittayakorn, W.; Vittayakorn, N.; Maluangnont, T. AC conductivity and dielectric properties of lepidocrocite-type alkali titanate tunable by interlayer cation and intralayer metal. Inorg. Chem. 2020, 59, 15813–15823.

[45]

Sriphan, S.; Pulphol, P.; Charoonsuk, T.; Maluangnont, T.; Vittayakorn, N. Effect of adsorbed water and temperature on the universal power law behavior of lepidocrocite-type alkali titanate ceramics. J. Phys. Chem. C 2021, 125, 12910–12920.

[46]

Maluangnont, T.; Chanlek, N.; Suksawad, T.; Tonket, N.; Saikhamdee, P.; Sukkha, U.; Vittayakorn, N. Beyond soft chemistry-bulk and surface modifications of polycrystalline lepidocrocite titanate induced by post-synthesis thermal treatment. Dalton Trans. 2017, 46, 14277–14285.

[47]

Maluangnont, T.; Sriphan, S.; Charoonsuk, T.; Vittayakorn, N. Dielectric spectroscopy and electric modulus analyses of Ti0.8O2 nanosheets-Ag nanoparticles-cellulose filter paper composites. Integr. Ferroelectr. 2022, 224, 214–224.

[48]

Min, C.; Yu, D. M. Simultaneously improved toughness and dielectric properties of epoxy/graphite nanosheet composites. Polym. Eng. Sci. 2010, 50, 1734–1742.

[49]

Xie, L. Y.; Huang, X. Y.; Huang, Y. H.; Yang, K.; Jiang, P. K. Core–shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Appl. Mater. Interfaces 2013, 5, 1747–1756.

[50]

Li, W. Y.; Song, Z. Q.; Zhong, J. M.; Qian, J.; Tan, Z. Y.; Wu, X. Y.; Chu, H. Y.; Nie, W.; Ran, X. H. Multilayer-structured transparent MXene/PVDF film with excellent dielectric and energy storage performance. J. Mater. Chem. C 2019, 7, 10371–10378.

[51]

Shibata, T.; Sakai, N.; Fukuda, K.; Ebina, Y.; Sasaki, T. Photocatalytic properties of titania nanostructured films fabricated from titania nanosheets. Phys. Chem. Chem. Phys. 2007, 9, 2413–2420.

[52]

Choudhary, S.; Sengwa, R. J. Morphological, structural, dielectric and electrical properties of PEO-ZnO nanodielectric films. J. Polym. Res. 2017, 24, 54.

[53]

Boukheir, S.; Samir, Z.; Belhimria, R.; Kreit, L.; Achour, M. E.; Éber, N.; Costa, L. C.; Oueriagli, A.; Outzourhit, A. Electric modulus spectroscopic studies of the dielectric properties of carbon nanotubes/epoxy polymer composite materials. J. Macromol. Sci. B 2018, 57, 210–221.

[54]

Cui, P.; Parida, K.; Lin, M. F.; Xiong, J. Q.; Cai, G. F.; Lee, P. S. Transparent, flexible cellulose nanofibril-phosphorene hybrid paper as triboelectric nanogenerator. Adv. Mater. Interfaces 2017, 4, 1700651.

[55]

Roy, S.; Ko, H. U.; Maji, P. K.; Van Hai, L.; Kim, J. Large amplification of triboelectric property by allicin to develop high performance cellulosic triboelectric nanogenerator. Chem. Eng. J. 2020, 385, 123723.

[56]

Nie, S. X.; Fu, Q.; Lin, X. J.; Zhang, C. Y.; Lu, Y. X.; Wang, S. F. Enhanced performance of a cellulose nanofibrils-based triboelectric nanogenerator by tuning the surface polarizability and hydrophobicity. Chem. Eng. J. 2021, 404, 126512.

[57]

Shi, K. M.; Huang, X. Y.; Sun, B.; Wu, Z. Y.; He, J. L.; Jiang, P. K. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 2019, 57, 450–458.

[58]

Bayan, S.; Bhattacharya, D.; Mitra, R. K.; Ray, S. K. Two-dimensional graphitic carbon nitride nanosheets: A novel platform for flexible, robust and optically active triboelectric nanogenerators. Nanoscale 2020, 12, 21334–21343.

[59]

Mishra, S.; Potu, S.; Puppala, R. S.; Rajaboina, R. K.; Kodali, P.; Divi, H. A novel ZnS nanosheets-based triboelectric nanogenerator and its applications in sensing, self-powered electronics, and digital systems. Mater. Today Commun. 2022, 31, 103292.

[60]

Feng, Y. M.; He, M.; Liu, X.; Wang, W.; Yu, A. F.; Wan, L. Y.; Zhai, J. Y. Alternate-layered MXene composite film-based triboelectric nanogenerator with enhanced electrical performance. Nanoscale Res. Lett. 2021, 16, 81.

[61]

Sahatiya, P.; Kannan, S.; Badhulika, S. Few layer MoS2 and in situ poled pvdf nanofibers on low cost paper substrate as high performance piezo-triboelectric hybrid nanogenerator: Energy harvesting from handwriting and human touch. Appl. Mater. Today 2018, 13, 91–99.

[62]

Pang, L. L.; Li, Z. K.; Zhao, Y. L.; Zhang, X.; Du, W. W.; Chen, L.; Yu, A. F.; Zhai, J. Y. Triboelectric nanogenerator based on polyimide/boron nitride nanosheets/polyimide nanocomposite film with enhanced electrical performance. ACS Appl. Electron. Mater. 2022, 4, 3027–3035.

[63]

Jiang, C. M.; Wu, C.; Li, X. J.; Yao, Y.; Lan, L. Y.; Zhao, F. N.; Ye, Z. Z.; Ying, Y. B.; Ping, J. F. All-electrospun flexible triboelectric nanogenerator based on metallic MXene nanosheets. Nano Energy 2019, 59, 268–276.

[64]

Yang, P.; Wang, P. F.; Diao, D. F. Graphene nanosheets enhanced triboelectric output performances of PTFE films. ACS Appl. Electron. Mater. 2022, 4, 2839–2850.

[65]

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

[66]

Zhou, Y. H.; Deng, W. L.; Xu, J.; Chen, J. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell Rep. Phys. Sci. 2020, 1, 100142.

[67]

Zhou, Y. S.; Wang, S. H.; Yang, Y.; Zhu, G.; Niu, S. M.; Lin, Z. H.; Liu, Y.; Wang, Z. L. Manipulating nanoscale contact electrification by an applied electric field. Nano Lett. 2014, 14, 1567–1572.

[68]

Hajra, S.; Padhan, A. M.; Sahu, M.; Alagarsamy, P.; Lee, K.; Kim, H. J. Lead-free flexible bismuth titanate-pdms composites: A multifunctional colossal dielectric material for hybrid piezo-triboelectric nanogenerator to sustainably power portable electronics. Nano Energy 2021, 89, 106316.

[69]

Lee, D. W.; Jeong, D. G.; Kim, J. H.; Kim, H. S.; Murillo, G.; Lee, G. H.; Song, H. C.; Jung, J. H. Polarization-controlled PVDF-based hybrid nanogenerator for an effective vibrational energy harvesting from human foot. Nano Energy 2020, 76, 105066.

[70]

Tan, G. J.; Shi, F. Y.; Hao, S. Q.; Chi, H.; Bailey, T. P.; Zhao, L. D.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. J. Am. Chem. Soc. 2015, 137, 11507–11516.

[71]

Peng, J.; Zhang, H. L.; Zheng, Q. F.; Clemons, C. M.; Sabo, R. C.; Gong, S. Q.; Ma, Z. Q.; Turng, L. S. A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 2017, 9, 1428–1433.

[72]

Guo, Q. Z.; Yang, L. C.; Wang, R. C.; Liu, C. P. Tunable work function of MgxZn1−xO as a viable friction material for a triboelectric nanogenerator. ACS Appl. Mater. Interfaces 2019, 11, 1420–1425.

[73]
Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New York, 2006.
[74]

Zhang, R. Y.; Hummelgård, M.; Örtegren, J.; Olsen, M.; Andersson, H.; Yang, Y.; Wang, Z. L.; Olin, H.; Sutar, P.; Mihailovic, D. All-inorganic triboelectric nanogenerators based on Mo6S3I6 and indium tin oxide. Nano Energy 2021, 89, 106363.

[75]

Hosseini, H.; Mousavi, S. M.; Wurm, F. R.; Goodarzi, V. Display of hidden properties of flexible aerogel based on bacterial cellulose/polyaniline nanocomposites with helping of multiscale modeling. Eur. Polym. J. 2021, 146, 110251.

Nano Research
Pages 3168-3179
Cite this article:
Sriphan S, Pharino U, Charoonsuk T, et al. Tailoring charge affinity, dielectric property, and band gap of bacterial cellulose paper by multifunctional Ti2NbO7 nanosheets for improving triboelectric nanogenerator performance. Nano Research, 2023, 16(2): 3168-3179. https://doi.org/10.1007/s12274-022-4957-3
Topics:

790

Views

20

Crossref

21

Web of Science

19

Scopus

0

CSCD

Altmetrics

Received: 02 July 2022
Revised: 10 August 2022
Accepted: 24 August 2022
Published: 13 September 2022
© Tsinghua University Press 2022
Return