AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

S-scheme heterojunction/Schottky junction tandem synergistic effect promotes visible-light-driven catalytic activity

Shuai Wang1,3Xin Du3Changhao Yao3Yifeng Cai3Huiyuan Ma1( )Baojiang Jiang4( )Jun Ma1,2( )
School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
Department of Food and Environment Engineering, East University of Heilongjiang, Harbin 150066, China
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China
Show Author Information

Graphical Abstract

α-Fe2O3@ZnIn2S4/Ti3C2 quantum dots (QDs) S-scheme/Schottky tandem heterojunction photocatalyst is fabricated via hydrothermal method combined with in-situ growth, and exhibits excellent visible-light-driven photocatalytic performance. This is attributed to the construction of the S-scheme transport channel to retain the photogenerated electrons and holes with redox functions, and the tandem Schottky junction further improves the spatial separation efficiency of photogenerated charges.

Abstract

Designing photocatalysts with high light utilization and efficient photogenerated carrier separation for pollutant degradation is one of the important topics for sustainable development. In this study, hierarchical core–shell material α-Fe2O3@ZnIn2S4 with a step-scheme (S-scheme) heterojunction is synthesized by in situ growth technique, and MXene Ti3C2 quantum dots (QDs) are introduced to construct a double-heterojunction tandem mechanism. The photodegradation efficiency of α-Fe2O3@ZnIn2S4/Ti3C2 QDs to bisphenol A is 96.1% and its reaction rate constant attained 0.02595 min−1, which is 12.3 times that of pure α-Fe2O3. Meanwhile, a series of characterizations analyze the reasons for the enhanced photocatalytic activity, and the charge transport path of the S-scheme heterojunction/Schottky junction tandem is investigated. The construction of the S-scheme heterojunction enables the photo-generated electrons of α-Fe2O3 and the holes of ZnIn2S4 to transfer and combine under the action of the reverse built-in electric field. Due to the metallic conductivity of Ti3C2 QDs, the photogenerated electrons of ZnIn2S4 are further transferred to Ti3C2 QDs to form a Schottky junction, which in turn forms a double-heterojunction tandem mechanism, showing a remarkable charge separation efficiency. This work provides a new opinion for the construction of tandem double heterojunctions to degrade harmful pollutants.

Electronic Supplementary Material

Download File(s)
12274_2022_4960_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Huang, T. X.; Dong, B.; Filbrun, S. L.; Okmi, A. A.; Cheng, X. D.; Yang, M.; Mansour, N.; Lei, S. D.; Fang, N. Single-molecule photocatalytic dynamics at individual defects in two-dimensional layered materials. Sci. Adv. 2021, 7, eabj4452.

[2]

Lotfi, S.; Fischer, K.; Schulze, A.; Schäfer, A. I. Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process. Nat. Nanotechnol. 2022, 17, 417–423.

[3]

Zhao, D. M.; Wang, Y. Q.; Dong, C. L.; Huang, Y. C.; Chen, J.; Xue, F.; Shen, S. H.; Guo, L. J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat. Energy. 2021, 6, 388–397.

[4]

Qian, Y.; Zhang, F.; Pang, H. A review of MOFs and their composites-based photocatalysts: Synthesis and applications. Adv. Funct. Mater. 2021, 31, 2104231.

[5]

Yang, M. Q.; Gao, M. M.; Hong, M. H.; Ho, G. W. Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv. Mater. 2018, 30, 1802894.

[6]

Low, J.; Yu, J. G.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694.

[7]

Tan, Y. X.; Chai, Z. M.; Wang, B. H.; Tian, S.; Deng, X. X.; Bai, Z. J.; Chen, L.; Shen, S.; Guo, J. K.; Cai, M. Q. et al. Boosted photocatalytic oxidation of toluene into benzaldehyde on CdIn2S4-CdS: Synergetic effect of compact heterojunction and S-vacancy. ACS Catal. 2021, 11, 2492–2503.

[8]

Li, X. B.; Kang, B. B.; Dong, F.; Zhang, Z. Q.; Luo, X. D.; Han, L.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Xu, J. L. et al. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671.

[9]

Wang, J. P.; Yu, Y.; Cui, J. Y.; Li, X. R.; Zhang, Y. L.; Wang, C.; Yu, X. L.; Ye, J. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. Appl. Catal. B Environ. 2022, 301, 120814.

[10]

Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, e2107668.

[11]
Bao, Y. J.; Song, S. Q.; Yao, G. J.; Jiang, S. J. S-scheme photocatalytic systems. Sol. RRL 2021, 5, 2100118.
[12]

Gong, S. Q.; Teng, X.; Niu, Y. L.; Liu, X.; Xu, M. Z.; Xu, C.; Ji, L.; Chen, Z. F. Construction of S-scheme 0D/2D heterostructures for enhanced visible-light-driven CO2 reduction. Appl. Catal. B. Environ. 2021, 298, 120521.

[13]

Xu, X. Y.; Su, Y. H.; Dong, Y. P.; Luo, X.; Wang, S. H.; Zhou, W. Y.; Li, R.; Homewood, K. P.; Xia, X. H. et al. Designing and fabricating a CdS QDs/Bi2MoO6 monolayer S-scheme heterojunction for highly efficient photocatalytic C2H4 degradation under visible light. J. Hazard. Mater. 2022, 424, 127685.

[14]

Le, S. K.; Zhu, C. Z.; Cao, Y. W.; Wang, P.; Liu, Q. S.; Zhou, H. C.; Chen, C. X.; Wang, S. B.; Duan, X. G. V2O5 nanodot-decorated laminar C3N4 for sustainable photodegradation of amoxicillin under solar light. Appl. Catal. B. Environ. 2022, 303, 120903.

[15]

Lian, X. Y.; Xue, W. H.; Dong, S.; Liu, E. Z.; Li, H.; Xu, K. Z. Construction of S-scheme Bi2WO6/g-C3N4 heterostructure nanosheets with enhanced visible-light photocatalytic degradation for ammonium dinitramide. J. Hazard. Mater. 2021, 412, 125217.

[16]

Pan, T.; Chen, D. D.; Xu, W. C.; Fang, J. Z.; Wu, S. X.; Liu, Z.; Wu, K.; Fang, Z. Q. Anionic polyacrylamide-assisted construction of thin 2D-2D WO3/g-C3N4 step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. J. Hazard. Mater. 2020, 393, 122366.

[17]

She, X. J.; Wu, J. J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y. H.; Nie, K. Q.; Liu, Y.; Yang, Y. C.; Rodrigues, M. T. F. et al. High efficiency photocatalytic water splitting using 2D alpha-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 2017, 7, 1700025.

[18]

Song, J.; Lu, Y.; Lin, Y.; Liu, Q. W.; Wang, X. X.; Su, W. Y. A direct Z-scheme α-Fe2O3/LaTiO2N visible-light photocatalyst for enhanced CO2 reduction activity. Appl. Catal. B Environ. 2021, 292, 120185.

[19]

Wang, W. L.; Zhao, W. L.; Huang, H. M.; Chen, R. Y.; Shi, H. F. A 2D/2D S-scheme photo-Fenton catalyst based on ultrathin Bi2MoO6 and Fe2O3 hexagonal nanosheets for efficient tetracycline degradation. Catal. Sci. Technol. 2021, 11, 2948–2956.

[20]

Wang, X. H.; Wang, X. H.; Huang, J. F.; Li, S. X.; Meng, A. L.; Li, Z. J. Interfacial chemical bond and internal electric field modulated Z-scheme Sv-ZnIn2S4/MoSe2 photocatalyst for efficient hydrogen evolution. Nat. Commun. 2021, 12, 4112.

[21]

Shi, X. W.; Dai, C.; Wang, X.; Hu, J. Y.; Zhang, J. Y.; Zheng, L. X.; Mao, L.; Zheng, H. J.; Zhu, M. S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.

[22]
Wang, L. B.; Cheng, B.; Zhang, L. Y.; Yu, J. G. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction. Small 2021, 17, 2103447.
[23]

Su, H.; Rao, C.; Zhou, L.; Pang, Y. X.; Lou, H. M.; Yang, D. J.; Qiu, X. Q. Mo-doped/Ni-supported ZnIn2S4-wrapped NiMoO4 S-scheme heterojunction photocatalytic reforming of lignin into hydrogen. Green Chem. 2022, 24, 2027–2035.

[24]

Shi, W. N.; Wang, Y. C.; Guo, X. W.; Qiao, X.; Liu, F.; Li, R. L.; Zhang, W. Q.; Hou, Y. X.; Han, H. J. Controllable synthesized step-scheme heterojunction of CuBi2O4 decorated WO3 plates for visible-light-driven CO2 reduction. Nano Res. 2022, 15, 5962–5969.

[25]

Cao, M. W.; Zhuang, Z. W.; Liu, Y.; Zhang, Z. J.; Xuan, J. M.; Zhang, Q. H.; Wang, W. T. Peptide-mediated green synthesis of the MnO2@ZIF-8 core–shell nanoparticles for efficient removal of pollutant dyes from wastewater via a synergistic process. J. Colloid Interface Sci. 2022, 608, 2779–2790.

[26]

Zhang, M. Y.; Li, J. K.; Wang, R.; Zhao, S. N.; Zang, S. Q.; Mak, T. C. W. Construction of core–shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv. Sci. 2021, 8, 2101884.

[27]

Zhao, H. Y.; Li, X.; Cai, M. K.; Liu, C.; You, Y. M.; Wang, R.; Channa, A. I.; Lin, F.; Huo, D.; Xu, G. et al. Role of copper doping in heavy metal-free InP/ZnSe core/shell quantum dots for highly efficient and stable photoelectrochemical cell. Adv. Energy Mater. 2021, 11, 2101230.

[28]

Guo, S. W.; Li, Y. K.; Xue, C.; Sun, Y. R.; Wu, C.; Shao, G. S.; Zhang, P. Controllable construction of hierarchically CdIn2S4/CNFs/Co4S3 nanofiber networks towards photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 419, 129213.

[29]

Wu, C. X.; Xing, Z. P.; Fang, B.; Cui, Y. Q.; Li, Z. Z.; Zhou, W. Polyoxometalate-based yolk@shell dual Z-scheme superstructure tandem heterojunction nanoreactors: Encapsulation and confinement effects. J. Mater. Chem. A, 2021, 10, 180–191.

[30]

Chen, Y. F.; Ren, X. H.; Wang, X. F.; Tian, Z.; Yang, X.; Lu, J. W.; Bai, H. Y.; Jiao, T. F.; Huang, H.; Hu, J. Construction of Ag decorated P-doped g-C3N4 nanosheets Schottky junction via silver mirror reaction for enhanced photocatalytic activities. Int. J. Hydrogen Energy 2022, 47, 250–263.

[31]

Liu, X. Y.; Liu, H.; Wang, Y. J.; Yang, W. W.; Yu, Y. S. Nitrogen-rich g-C3N4@AgPd Mott–Schottky heterojunction boosts photocatalytic hydrogen production from water and tandem reduction of NO3 and NO2. J. Colloid Interface Sci. 2021, 581, 619–626.

[32]

Huang, Z. H.; Chen, H.; He, X.; Fang, W.; Li, W. X.; Du, X.; Zeng, X. H.; Zhao, L. Constructing a WC/NCN Schottky junction for rapid electron transfer and enrichment for highly efficient photocatalytic hydrogen evolution. Acs Appl. Mater. Interfaces 2021, 13, 46598–46607.

[33]

Shao, B. B.; Liu, Z. F.; Zeng, G. M.; Liu, Y.; Liang, Q. H.; He, Q. Y.; Wu, T.; Pan, Y.; Huang, J.; Peng, Z. et al. Synthesis of 2D/2D CoAl-LDHs/Ti3C2Tx Schottky-junction with enhanced interfacial charge transfer and visible-light photocatalytic performance. Appl. Catal. B Environ. 2021, 286, 119867.

[34]

Xiao, J. D.; Han, L. L.; Luo, J.; Yu, S. H.; Jiang, H. L. Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: Steering charge flow for enhanced visible-light photocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1103–1107.

[35]

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

[36]

Tang, R.; Zhou, S. J.; Li, C. X.; Chen, R.; Zhang, L. Y.; Zhang, Z. W.; Yin, L. W. Janus-structured Co-Ti3C2 MXene quantum dots as a Schottky catalyst for high-performance photoelectrochemical water oxidation. Adv. Funct. Mater. 2020, 30, 2000637.

[37]

Wu, Z. Y.; Li, C. R.; Li, Z.; Feng, K.; Cai, M. J.; Zhang, D. K.; Wang, S. H.; Chu, M. Y.; Zhang, C. C.; Shen, J. H. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 2021, 15, 5696–5705.

[38]

Wang, H. M.; Zhao, R.; Qin, J. Q.; Hu, H. X.; Fan, X. W.; Cao, X.; Wang, D. MIL-100(Fe)/Ti3C2 MXene as a Schottky catalyst with enhanced photocatalytic oxidation for nitrogen fixation activities. ACS Appl. Mater. Interfaces 2019, 11, 44249–44262.

[39]

Chen, Y. L.; Bai, X. A review on quantum dots modified g-C3N4-based photocatalysts with improved photocatalytic activity. Catalysts 2020, 10, 142.

[40]

Zeng, Z. P.; Yan, Y. B.; Chen, J.; Zan, P.; Tian, Q. H.; Chen, P. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater. 2019, 29, 1806500.

[41]

Guo, M. J.; Xing, Z. P.; Zhao, T. Y.; Qiu, Y. L.; Tao, B.; Li, Z. Z.; Zhou, W. Hollow flower-like polyhedral alpha-Fe2O3/defective MoS2/Ag Z-scheme heterojunctions with enhanced photocatalytic-Fenton performance via surface plasmon resonance and photothermal effects. Appl. Catal. B Environ. 2020, 272, 118978.

[42]

Zhang, S. Y.; Du, M.; Xing, Z. P.; Li, Z. Z.; Pan, K.; Zhou, W. Defect-rich and electron-rich mesoporous Ti-MOFs based NH2-MIL-125(Ti)@ZnIn2S4/CdS hierarchical tandem heterojunctions with improved charge separation and enhanced solar-driven photocatalytic performance. Appl. Catal. B Environ. 2020, 262, 118202.

[43]

Guo, M. J.; Xing, Z. P.; Zhao, T. Y.; Li, Z. Z.; Yang, S. L.; Zhou, W. WS2 quantum dots/MoS2@WO3−x core–shell hierarchical dual Z-scheme tandem heterojunctions with wide-spectrum response and enhanced photocatalytic performance. Appl. Catal. B Environ. 2019, 257, 117913.

[44]

Sun, B. J.; Zhou, W.; Li, H. Z.; Ren, L. P.; Qiao, P. Z.; Li, W.; Fu, H. G. Synthesis of particulate hierarchical tandem heterojunctions toward optimized photocatalytic hydrogen production. Adv. Mater. 2018, 30, 1804282.

[45]

Wang, A. W.; Ni, J. X.; Wang, W.; Wang, X. Y.; Liu, D. M.; Zhu, Q. MOF-derived N-doped ZnO carbon skeleton@hierarchical Bi2MoO6 S-scheme heterojunction for photodegradation of SMX:Mechanism, pathways and DFT calculation. J. Hazard. Mater. 2022, 426, 128106.

[46]

Ouyang, C.; Quan, X. Y.; Zhang, C. L.; Pan, Y. X.; Li, X. Y.; Hong, Z. L.; Zhi, M. J. Direct Z-scheme ZnIn2S4@MoO3 heterojunction for efficient photodegradation of tetracycline hydrochloride under visible light irradiation. Chem. Eng. J. 2021, 424, 130510.

[47]

Zhang, Y.; Wu, Y. X.; Wan, L.; Ding, H. J.; Li, H. X.; Wang, X. Y.; Zhang, W. H. Hollow core–shell Co9S8@ZnIn2S4/CdS nanoreactor for efficient photothermal effect and CO2 photoreduction. Appl. Catal. B Environ. 2022, 311, 121255.

[48]

Du, X.; Zhao, T. Y.; Xiu, Z.; Yang, Z. K.; Xing, Z. P.; Li, Z. Z.; Yang, S. L.; Zhou, W. Nano-zero-valent iron and MnOx selective deposition on BiVO4 decahedron superstructures for promoted spatial charge separation and exceptional catalytic activity in visible-light-driven photocatalysis-Fenton coupling system. J. Hazard. Mater. 2019, 377, 330–340.

[49]

Luo, H.; Dong, C. F.; Xiao, K.; Li, X. G. The passive behaviour of ferritic stainless steel containing alloyed tin in acidic media. RSC Adv. 2016, 6, 9940–9949.

[50]

Si, Q. S.; Guo, W. Q.; Wang, H. Z.; Liu, B. H.; Zheng, S. S.; Zhao, Q.; Luo, H. C.; Ren, N. Q.; Yu, T. Difunctional carbon quantum dots/g-C3N4 with in-plane electron buffer for intense tetracycline degradation under visible light: Tight adsorption and smooth electron transfer. Appl. Catal. B Environ. 2021, 299, 120694.

[51]

Qiu, Y. L.; Xing, Z. P.; Guo, M. J.; Li, Z. Z.; Wang, N.; Zhou, W. Hollow cubic Cu2−xS/Fe-POMs/AgVO3 dual Z-scheme heterojunctions with wide-spectrum response and enhanced photothermal and photocatalytic-fenton performance. Appl. Catal. B Environ. 2021, 298, 120628.

[52]

An, X. Q.; Bian, J. Y.; Zhu, K.; Liu, R. P.; Liu, H. J.; Qu, J. H. Facet-dependent activity of TiO2/covalent organic framework S-scheme heterostructures for CO2 photoreduction. Chem. Eng. J. 2022, 442, 135279.

[53]

Wu, S. S.; Yu, X.; Zhang, J. L.; Zhang, Y. M.; Zhu, Y.; Zhu, M. S. Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal. Chem. Eng. J. 2021, 411, 128555.

[54]

Sherryna, A.; Tahir, M. Role of Ti3C2 MXene as prominent schottky barriers in driving hydrogen production through photoinduced water splitting: A comprehensive review. ACS Appl. Energy. Mater. 2021, 4, 11982–12006.

[55]
Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci., in press, https://doi.org/10.1002/wcms.1606.
[56]

Neese, F. Software update: The ORCA program system, version 4. 0. WIREs Comput. Mol. Sci. 2018, 8, e1327.

[57]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

Nano Research
Pages 2152-2162
Cite this article:
Wang S, Du X, Yao C, et al. S-scheme heterojunction/Schottky junction tandem synergistic effect promotes visible-light-driven catalytic activity. Nano Research, 2023, 16(2): 2152-2162. https://doi.org/10.1007/s12274-022-4960-8
Topics:

857

Views

21

Crossref

16

Web of Science

20

Scopus

2

CSCD

Altmetrics

Received: 14 July 2022
Revised: 15 August 2022
Accepted: 24 August 2022
Published: 21 October 2022
© Tsinghua University Press 2022
Return