AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices

Haihong Zheng1,2Biao Wu1,2Shaofei Li1Jun He1Keqiu Chen3Zongwen Liu4,5Yanping Liu1,2,6 ( )
School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, Changsha 410083, China
State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha 410083, China
Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
Shenzhen Research Institute of Central South University, Shenzhen 518000, China
Show Author Information

Graphical Abstract

Modulation of moire potential and intralayer excitons in the twisted homobilayer WS2/WS2 has been demonstrated. There findings provide insights for an in-depth understanding of the behaviors of moiré excitons in the twisted van der Waals homostructure superlattices.

Abstract

The formation of moiré superlattices in twisted van der Waals (vdW) homostructures provides a versatile platform for designing the electronic band structure of two-dimensional (2D) materials. In graphene and transition metal dichalcogenides (TMDs) moiré systems, twist angle has been shown to be a key parameter for regulating the moiré superlattice. However, the effect of the modulation of the twist angle on moiré potential and interlayer coupling has not been the subject of experimental investigation. Here, we report the observation of the modulation of moiré potential and intralayer excitons in the WS2/WS2 homostructure. By accurately adjusting the torsion angle of the homobilayers, the depth of the moiré potential can be modulated. The confinement effect of the moiré potential on the intralayer excitons was further demonstrated by the changing of temperature and valley polarization. Furthermore, we show that a detection of atomic reconstructions by the low-frequency Raman mapping to map out inhomogeneities in moiré lattices on a large scale, which endows the uniformity of interlayer coupling. Our results provide insights for an in-depth understanding of the behaviors of moiré excitons in the twisted van der Waals homostructure, and promote the study of electrical engineering and topological photonics.

Electronic Supplementary Material

Download File(s)
12274_2022_4964_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Scrace, T.; Tsai, Y.; Barman, B.; Schweidenback, L.; Petrou, A.; Kioseoglou, G.; Ozfidan, I.; Korkusinski, M.; Hawrylak, P. Magnetoluminescence and valley polarized state of a two-dimensional electron gas in WS2 monolayers. Nat. Nanotechnol. 2015, 10, 603–607.

[2]

Zhu, Y.; Sun, X. Q.; Tang, Y. L.; Fu, L.; Lu, Y. R. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Res. 2021, 14, 1912–1936.

[3]

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530–1534.

[4]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[5]

Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

[6]

Wu, L. S.; Cong, C. X.; Shang, J. Z.; Yang, W. H.; Chen, Y.; Zhou, J. D.; Ai, W.; Wang, Y. L.; Feng, S.; Zhang, H. B. et al. Raman scattering investigation of twisted WS2/MoS2 heterostructures: Interlayer mechanical coupling versus charge transfer. Nano Res. 2021, 14, 2215–2223.

[7]

Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129–3151.

[8]

Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.

[9]

Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.

[10]

Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Zeng, Y. J.; Chen, K. Q.; Liu, Z. W.; Chen, S. L.; Pan, A. L. Evidence for moiré intralayer excitons in twisted WSe2/WSe2 homobilayer superlattices. Light Sci. Appl. 2022, 11, 166.

[11]

Shimazaki, Y.; Schwartz, I.; Watanabe, K.; Taniguchi, T.; Kroner, M.; Imamoğlu, A. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 2020, 580, 472–477.

[12]

Shi, H. H.; Zhan, Z.; Qi, Z. K.; Huang, K. X.; van Veen, E.; Silva-Guillén, J. Á.; Zhang, R. X.; Li, P. J.; Xie, K.; Ji, H. X. et al. Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat. Commun. 2020, 11, 371.

[13]

Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

[14]

Marcellina, E.; Liu, X.; Hu, Z. H.; Fieramosca, A.; Huang, Y. Q.; Du, W.; Liu, S.; Zhao, J. X.; Watanabe, K.; Taniguchi, T. et al. Evidence for moiré trions in twisted MoSe2 homobilayers. Nano Lett. 2021, 21, 4461–4468.

[15]

Plochocka, P. Excitons in a twisted world. Nat. Nanotechnol. 2020, 15, 727–729.

[16]

Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

[17]
Wu, B.; Zheng, H. H.; Ding, J. N.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures. Nano Res., in press, https://doi.org/10.1007/s12274-022-4580-3.
[18]

Castellanos-Gomez, A.; van der Zant, H. S. J.; Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2014, 7, 572–578.

[19]

Bekenstein, R.; Pikovski, I.; Pichler, H.; Shahmoon, E.; Yelin, S. F.; Lukin, M. D. Quantum metasurfaces with atom arrays. Nat. Phys. 2020, 16, 676–681.

[20]

Byrnes, T.; Recher, P.; Yamamoto, Y. Mott transitions of exciton polaritons and indirect excitons in a periodic potential. Phys. Rev. B 2010, 81, 205312.

[21]

Sung, J.; Zhou, Y.; Scuri, G.; Zólyomi, V.; Andersen, T. I.; Yoo, H.; Wild, D. S.; Joe, A. Y.; Gelly, R. J.; Heo, H. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 2020, 15, 750–754.

[22]

Li, S. F.; Zheng, H. H.; Ding, J. N.; Wu, B.; He, J.; Liu, Z. W.; Liu, Y. P. Dynamic control of moiré potential in twisted WS2-WSe2 heterostructures. Nano Res. 2022, 15, 7688–7694.

[23]

Cai, L.; Duan, H. L.; Liu, Q. H.; Wang, C.; Tan, H.; Hu, W.; Hu, F. C.; Sun, Z. H.; Yan, W. S. Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Res. 2021, 14, 4182–4187.

[24]

Jin, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

[25]

Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

[26]

Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

[27]

Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

[28]

Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

[29]

Lin, K. Q.; Holler, J.; Bauer, J. M.; Parzefall, P.; Scheuck, M.; Peng, B.; Korn, T.; Bange, S.; Lupton, J. M.; Schüller, C. Large-scale mapping of moiré superlattices by hyperspectral Raman imaging. Adv. Mater. 2021, 33, 2008333.

[30]

Kang, J.; Li, J. B.; Li, S. S.; Xia, J. B.; Wang, L. W. Electronic structural moiré pattern effects on MoS2/MoSe2 2D heterostructures. Nano Lett. 2013, 13, 5485–5490.

[31]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[32]

Shibata, H. Negative thermal quenching curves in photoluminescence of solids. Jpn. J. Appl. Phys. 1998, 37, 550.

[33]

Fang, Y. T.; Wang, L.; Sun, Q. L.; Lu, T. P.; Deng, Z.; Ma, Z. G.; Jiang, Y.; Jia, H. Q.; Wang, W. X.; Zhou, J. M. et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718.

[34]

Zhao, S. W.; Li, X. X.; Dong, B. J.; Wang, H. D.; Wang, H. W.; Zhang, Y. P.; Han, Z.; Zhang, H. Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges. Rep. Prog. Phys. 2021, 84, 026401.

[35]

Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.

[36]

Kundu, S.; Naik, M. H.; Krishnamurthy, H. R.; Jain, M. Moiré induced topology and flat bands in twisted bilayer WSe2: A first-principles study. Phys. Rev. B 2022, 105, L081108.

Nano Research
Pages 3429-3434
Cite this article:
Zheng H, Wu B, Li S, et al. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Research, 2023, 16(2): 3429-3434. https://doi.org/10.1007/s12274-022-4964-4
Topics:

1090

Views

18

Crossref

15

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 09 June 2022
Revised: 26 July 2022
Accepted: 24 August 2022
Published: 27 September 2022
© Tsinghua University Press 2022
Return