AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Lamellar-assembled PdNi super-nanosheets as effective oxygen redox dual-electrocatalysts for rechargeable Zn-air batteries

Luhong Fu§Kai Liu§Chao ZhenYuxin ZhuZixi LyuGuifen DuShuifen Xie( )
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Instrumental Analysis Center, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China

§ Luhong Fu and Kai Liu contributed equally to this work.

Show Author Information

Graphical Abstract

Lamellar-assembled Pd92Ni8 super-nanosheets (SNSs) are employed as attractive and effective oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) bifunctional electrocatalysts for rechargeable high-powered Zn-air batteries (ZABs).

Abstract

Exploration of bifunctional electrocatalysts toward effective oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is pivotal for developing high-efficiency and rechargeable metal-air batteries but remains great challenging. Here we elaborately synthesize lamellar-assembled PdNi super-nanosheets (SNSs) with an optimized Pd/Ni molar ratio to serve as attractive ORR and OER bifunctional electrocatalysts for rechargeable high-powered Zn-air batteries (ZABs). The products are layer-by-layer stackings of ultrathin PdNi nanosheet motifs. On the drastically extended two-dimensional (2D) surface, the inserted Ni atoms can substantially lower down the d-band center of surface Pd toward improved ORR kinetics and concurrently create oxytropic NiOx sites to adsorb –OH groups for promoting the reverse OER electrocatalysis. Specifically, the ORR mass activity and specific activity of the primary Pd92Ni8 SNSs attain 2.5 A·mg−1 and 3.15 mA·cm−2, which are respectively 14 and 9 times those of commercial Pt/C. Meanwhile, the OER activity and stability of Pd92Ni8 SNSs/C distinctly outperform those of the RuO2 benchmark, suggesting excellent reversible oxygen electrocatalysis. The power density of the ZAB with Pd92Ni8 SNSs/C as the air cathode is 2.7 times higher than that by Pt/C benchmark. Significantly, it can last for over 150 h without significant performance degradation during the charge–discharge cycle test. This work showcases a feasible strategy for developing self-assembled multimetallic 2D nanomaterials with excellent bifunctional catalytic performances toward energy conversion applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4966_MOESM1_ESM.pdf (3.5 MB)

References

[1]

Yu, D. S.; Ma, Y. C.; Hu, F.; Lin, C. C.; Li, L. L.; Chen, H. Y.; Han, X. P.; Peng, S. J. Dual-sites coordination engineering of single atom catalysts for flexible metal-air batteries. Adv. Energy Mater. 2021, 11, 2101242.

[2]

Wang, H. F.; Xu, Q. Materials design for rechargeable metal-air batteries. Matter 2019, 1, 565–595.

[3]

Zhou, T. P.; Zhang, N.; Wu, C. Z.; Xie, Y. Surface/interface nanoengineering for rechargeable Zn-air batteries. Energy Environ. Sci. 2020, 13, 1132–1153.

[4]

Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587.

[5]

Sun, W.; Wang, F.; Zhang, B.; Zhang, M. Y.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. S. et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46–51.

[6]

Gao, Y.; Kong, D. B.; Cao, F. L.; Teng, S.; Liang, T.; Luo, B.; Wang, B.; Yang, Q. H.; Zhi, L. J. Synergistically tuning the graphitic degree, porosity, and the configuration of active sites for highly active bifunctional catalysts and Zn-air batteries. Nano Res. 2022, 15, 7959–7967.

[7]

Liu, X.; Zhang, G. Y.; Wang, L.; Fu, H. G. Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery. Small 2021, 17, 2006766.

[8]

Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.

[9]

Zhang, Z. Y.; Tan, Y. Y.; Zeng, T.; Yu, L. Y.; Chen, R. Z.; Cheng, N. C.; Mu, S. C.; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. 2021, 14, 2353–2362.

[10]

Sheng, J.; Zhu, S.; Jia, G. D.; Liu, X.; Li, Y. Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc-air batteries. Nano Res. 2021, 14, 4541–4547.

[11]

Yu, N. F.; Chen, H.; Kuang, J. B.; Bao, K. L.; Yan, W.; Ye, J. L.; Yang, Z. T.; Huang, Q. H.; Wu, Y. P.; Sun, S. G. Efficient oxygen electrocatalysts with highly-exposed Co-N4 active sites on N-doped graphene-like hierarchically porous carbon nanosheets enhancing the performance of rechargeable Zn-air batteries. Nano Res. 2022, 15, 7209–7219.

[12]

Kundu, A.; Mallick, S.; Ghora, S.; Raj, C. R. Advanced oxygen electrocatalyst for air-breathing electrode in Zn-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 40172–40199.

[13]

He, Y. T.; Yang, X. X.; Li, Y. S.; Liu, L. T.; Guo, S. W.; Shu, C. Y.; Liu, F.; Liu, Y. N.; Tan, Q.; Wu, G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022, 12, 1216–1227.

[14]

Ding, K. X.; Hu, J. G.; Jin, W.; Zhao, L. M.; Liu, Y. P.; Wu, Z. H.; Weng, B. C.; Hou, H. S.; Ji, X. B. Dianion induced electron delocalization of trifunctional electrocatalysts for rechargeable Zn-air batteries and self-powered water splitting. Adv. Funct. Mater. 2022, 32, 2201944.

[15]

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

[16]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[17]

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

[18]

Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

[19]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[20]

Sahoo, L.; Garg, R.; Kaur, K.; Vinod, C. P.; Gautam, U. K. Ultrathin twisty PdNi alloy nanowires as highly active ORR electrocatalysts exhibiting morphology-induced durability over 200 K cycles. Nano Lett. 2022, 22, 246–254.

[21]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[22]

Zhang, Y.; Huang, B. L.; Shao, Q.; Feng, Y. G.; Xiong, L. K.; Peng, Y.; Huang, X. Q. Defect engineering of palladium-tin nanowires enables efficient electrocatalysts for fuel cell reactions. Nano Lett. 2019, 19, 6894–6903.

[23]

Zhu, E. B.; Wu, M. H.; Xu, H. Z.; Peng, B. S.; Liu, Z. Y.; Huang, Y.; Li, Y. J. Stability of platinum-group-metal-based electrocatalysts in proton exchange membrane fuel cells. Adv. Funct. Mater. 2022, 32, 2203883.

[24]

Feng, Y. G.; Shao, Q.; Ji, Y. J.; Cui, X. N.; Li, Y. Y.; Zhu, X.; Huang, X. Q. Surface-modulated palladium-nickel icosahedra as high-performance non-platinum oxygen reduction electrocatalysts. Sci. Adv. 2018, 4, eaap8817.

[25]

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

[26]

Kabiraz, M. K.; Kim, J.; Choi, S. I. Shape and hydriding effects of palladium nanocatalyst toward oxygen electroreduction reaction. Bull. Korean Chem. Soc. 2021, 42, 802–805.

[27]

Jin, H.; Ruqia, B.; Park, Y.; Kim, H. J.; Oh, H. S.; Choi, S. I.; Lee, K. Nanocatalyst design for long-term operation of proton/anion exchange membrane water electrolysis. Adv. Energy Mater. 2020, 11, 2003188.

[28]

Kim, B.; Kabiraz, M. K.; Lee, J.; Choi, C.; Baik, H.; Jung, Y.; Oh, H. S.; Choi, S. I.; Lee, K. Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction. Matter 2021, 4, 3585–3604.

[29]

Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

[30]

Lai, J. P.; Lin, F.; Tang, Y. H.; Zhou, P.; Chao, Y. G.; Zhang, Y. L.; Guo, S. J. Efficient bifunctional polyalcohol oxidation and oxygen reduction electrocatalysts enabled by ultrathin PtPdM (M = Ni, Fe, Co) nanosheets. Adv. Energy Mater. 2019, 9, 1800684.

[31]

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

[32]

Liu, Z. Y.; Yang, X. Y.; Lu, B. Q.; Shi, Z. P.; Sun, D. M.; Xu, L.; Tang, Y. W.; Sun, S. H. Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Appl. Catal. B: Environ. 2019, 243, 86–93.

[33]

Wang, W.; Zhang, X.; Zhang, Y. H.; Chen, X. W.; Ye, J. Y.; Chen, J. Y.; Lyu, Z. X.; Chen, X. J.; Kuang, Q.; Xie, S. F. et al. Edge enrichment of ultrathin 2D PdPtCu trimetallic nanostructures effectuates top-ranked ethanol electrooxidation. Nano Lett. 2020, 20, 5458–5464.

[34]

Lyu, Z. X.; Zhang, X. G.; Wang, Y. C.; Liu, K.; Qiu, C. Y.; Liao, X. Y.; Yang, W. H.; Xie, Z. X.; Xie, S. F. Amplified interfacial effect in an atomically dispersed RuOx-on-Pd 2D inverse nanocatalyst for high-performance oxygen reduction. Angew. Chem., Int. Ed. 2021, 133, 16229–16236.

[35]

Wang, Y. R.; Lv, H.; Sun, L. Z.; Guo, X. W.; Xu, D. D.; Liu, B. Ultrathin and wavy PdB alloy nanowires with controlled surface defects for enhanced ethanol oxidation electrocatalysis. ACS Appl. Mater. Interfaces 2021, 13, 17599–17607.

[36]

Jia, Q.; Gao, J. Q.; Qiu, C.; Dong, L.; Jiang, Y. H.; Liu, X. H.; Hong, M.; Yang, S. H. Ultrasound-seeded vapor-phase-transport growth of boundary-rich layered double hydroxide nanosheet arrays for highly efficient water splitting. Chem. Eng. J. 2022, 433, 134552.

[37]

Xia, Y. N.; Campbell, C. T.; Cuenya, B. R.; Mavrikakis, M. Introduction: Advanced materials and methods for catalysis and electrocatalysis by transition metals. Chem. Rev. 2021, 121, 563–566.

[38]

Pi, Y. C.; Zhang, N.; Guo, S. J.; Guo, J.; Huang, X. Q. Ultrathin laminar Ir superstructure as highly efficient oxygen evolution electrocatalyst in broad pH range. Nano Lett. 2016, 16, 4424–4430.

[39]

Lyu, Z. X.; Zhang, X.; Liao, X. Y.; Liu, K.; Huang, H. P.; Cai, J. L.; Kuang, Q.; Xie, Z. X.; Xie, S. F. Two-dimensionally assembled Pd-Pt-Ir supernanosheets with subnanometer interlayer spacings toward high-efficiency and durable water splitting. ACS Catal. 2022, 12, 5305–5315.

[40]

Lu, X. Y.; Ahmadi, M.; DiSalvo, F. J.; Abruña, H. D. Enhancing the electrocatalytic activity of Pd/M (M = Ni, Mn) nanoparticles for the oxygen reduction reaction in alkaline media through electrochemical dealloying. ACS Catal. 2020, 10, 5891–5898.

[41]

Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. N. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 2005, 127, 17118–17127.

[42]

Liu, Y. M.; Li, X.; Bi, W.; Jin, M. S. An etching-assisted route for fast and large-scale fabrication of non-layered palladium nanosheets. Nanoscale 2018, 10, 7505–7510.

[43]

Huang, X. Q.; Tang, S. H.; Yang, J.; Tan, Y. M.; Zheng, N. F. Etching growth under surface confinement: An effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc. 2011, 133, 15946–15949.

[44]

Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z.; Zheng, N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol 2011, 6, 28–32.

[45]

Cui, J. B.; Ma, P.; Li, W. D.; Jiang, R.; Zheng, L. R.; Lin, Y.; Guo, C.; Yin, X.; Wang, L. Surface active-site engineering in hierarchical PtNi nanocatalysts for efficient triiodide reduction reaction. Nano Res. 2021, 14, 4714–4718.

[46]

Liu, K.; Huang, H. P.; Zhu, Y. X.; Wang, S. P.; Lyu, Z. X.; Han, X.; Kuang, Q.; Xie, S. F. Edge-segregated ternary Pd-Pt-Ni spiral nanosheets as high-performance bifunctional oxygen redox electrocatalysts for rechargeable zinc-air batteries. J. Mater. Chem. A 2022, 10, 3808–3817.

[47]

Huang, H. P.; Fu, L. H.; Kong, W. Q.; Ma, H. R.; Zhang, X.; Cai, J. L.; Wang, S. P.; Xie, Z. X.; Xie, S. F. Equilibrated PtIr/IrOx atomic heterojunctions on ultrafine 1D nanowires enable superior dual-electrocatalysis for overall water splitting. Small 2022, 18, 2201333.

[48]

Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.

[49]

Jensen, K. D.; Tymoczko, J.; Rossmeisl, J.; Bandarenka, A. S.; Chorkendorff, I.; Escudero-Escribano, M.; Stephens, I. E. L. Elucidation of the oxygen reduction volcano in alkaline media using a copper-platinum(111) alloy. Angew. Chem., Int. Ed. 2018, 130, 2850–2855.

[50]

Tu, K. J.; Zou, L. Y.; Yang, C. Q.; Su, Y. Z.; Lu, C. B.; Zhu, J. H.; Zhang, F.; Ke, C. C.; Zhuang, X. D. Ionic polyimide derived porous carbon nanosheets as high-efficiency oxygen reduction catalysts for Zn-air batteries. Chem.—Eur. J. 2020, 26, 6525–6534.

[51]

Lu, Y.; Wang, W.; Chen, X. W.; Zhang, Y. H.; Han, Y. C.; Cheng, Y.; Chen, X. J.; Liu, K.; Wang, Y. Y.; Zhang, Q. B. et al. Composition optimized trimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation. Nano Res. 2019, 12, 651–657.

[52]

Li, C. Z.; Yuan, Q.; Ni, B.; He, T.; Zhang, S. M.; Long, Y.; Gu, L.; Wang, X. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells. Nat. Commun. 2018, 9, 3702.

[53]

Qin, Y. C.; Zhang, W. L.; Guo, K.; Liu, X. B.; Liu, J. Q.; Liang, X. Y.; Wang, X. P.; Gao, D. W.; Gan, L. Y.; Zhu, Y. T. et al. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis. Adv. Funct. Mater. 2020, 30, 1910107.

[54]

Zhao, W.; Huang, K.; Zhang, Q. H.; Wu, H.; Gu, L.; Yao, K. F.; Shen, Y.; Shao, Y. In-situ synthesis, operation and regeneration of nanoporous silver with high performance toward oxygen reduction reaction. Nano Energy 2019, 58, 69–77.

[55]

Liu, X. F.; Li, Y. M.; Zhang, J. Z.; Lu, J. Ultrathin Ni/V-layered double hydroxide nanosheets for efficient visible-light-driven photocatalytic nitrogen reduction to ammonia. Nano Res. 2021, 14, 3372–3378.

[56]

Xu, D. D.; Liu, X. L.; Lv, H.; Liu, Y.; Zhao, S. L.; Han, M.; Bao, J. C.; He, J.; Liu, B. Ultrathin palladium nanosheets with selectively controlled surface facets. Chem. Sci. 2018, 9, 4451–4455.

[57]

Liao, P. L.; Keith, J. A.; Carter, E. A. Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. J. Am. Chem. Soc. 2012, 134, 13296–13309.

[58]

Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.

[59]

Liu, J. N.; Zhao, C. X.; Ren, D.; Wang, J.; Zhang, R.; Wang, S. H.; Zhao, C.; Li, B. Q.; Zhang, Q. Preconstructing asymmetric interface in air cathodes for high-performance rechargeable Zn-air batteries. Adv. Mater. 2022, 34, 2109407.

Nano Research
Pages 2163-2169
Cite this article:
Fu L, Liu K, Zhen C, et al. Lamellar-assembled PdNi super-nanosheets as effective oxygen redox dual-electrocatalysts for rechargeable Zn-air batteries. Nano Research, 2023, 16(2): 2163-2169. https://doi.org/10.1007/s12274-022-4966-2
Topics:

708

Views

5

Crossref

4

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 24 July 2022
Revised: 21 August 2022
Accepted: 25 August 2022
Published: 01 October 2022
© Tsinghua University Press 2022
Return