AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Intracellular and extracellular enzymatic responsive micelle for intelligent therapy of cancer

Dong Wan1Qinan Zhu1Jianxin Zhang2Xi Chen1Fangzhou Li3( )Yi Liu2( )Jie Pan1( )
School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, China
School of Chemistry, Tiangong University, Tianjin 300387, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Show Author Information

Graphical Abstract

In this work, intracellular and extracellular enzymatic responsive micelles were successfully constructed for targeting tumor cells and efficient drug delivery.

Abstract

Recently, the incidence of cancer keeps increasing, seriously endangers human health, and has evolved into the main culprit of human death. Conventional chemotherapeutic drugs, such as paclitaxel and doxorubicin (DOX), have some disadvantages, including low therapeutic effect, poor water solubility, high toxic side effects, short blood circulation time in the body, and so on. To improve the anti-tumor effect of the drug in vivo and reduce its side effects on the body, researchers have designed and developed a variety of responsive nanocarriers. In this work, we synthesized D-α-tocopherol polyethylene glycol 3350 succinate (TPGS3350)-Gly-Pro-Leu-Gly-Val-Arg (GPLGVR)-DOX (TPD) prodrugs in response to extracellular enzymes of matrix metalloproteinase (MMP-9) in the tumor microenvironment and FA-Asp-Glu-Val-Asp (DEVD)-DOX (FPD) prodrugs responsive to intracellular enzymes of caspase-3. Then, intracellular and extracellular enzyme-responsive TPD&FPD micelles with DOX (TPD&FPD&D) were successfully prepared through dialysis method. The outer layer of TPGS3350 can prolong the blood circulation time of micelles in vivo, followed by accumulation of micelles at tumor tissue through enhanced permeability and retention (EPR) effect. The peptide of GPLGVR can be cleaved by MMP-9 enzymes to remove the outer layer of TPGS3350, exposing the targeting molecule of folate, and then the micelles are engulfed by tumor cells through folate receptor-mediated endocytosis. After entering the tumor cells, the free DOX loaded in the micelles is released, which induces tumor cell apoptosis to activate caspase-3 in the cells, cutting the peptide DEVD to accelerate the intracellular release of the DOX, which further enhances cytotoxicity to improve antitumor effect.

Electronic Supplementary Material

Download File(s)
12274_2022_4967_MOESM1_ESM.pdf (370.4 KB)

References

[1]

Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249.

[2]

Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33.

[3]

Sengupta, S.; Kulkarni, A. Design principles for clinical efficacy of cancer nanomedicine: A look into the basics. ACS Nano 2013, 7, 2878–2882.

[4]

Wolfram, J.; Ferrari, M. Clinical cancer nanomedicine. Nano Today 2019, 25, 85–98.

[5]

Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J. M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018, 9, 1410.

[6]

Poon, W.; Kingston, B. R.; Ouyang, B.; Ngo, W.; Chan, W. C. W. A framework for designing delivery systems. Nat. Nanotechnol. 2020, 15, 819–829.

[7]

Manzari, M. T.; Shamay, Y.; Kiguchi, H.; Rosen, N.; Scaltriti, M.; Heller, D. A. Targeted drug delivery strategies for precision medicines. Nat. Rev. Mater. 2021, 6, 351–370.

[8]

Zhou, J.; Rao, L.; Yu, G. C.; Cook, T. R.; Chen, X. Y.; Huang, F. H. Supramolecular cancer nanotheranostics. Chem. Soc. Rev. 2021, 50, 2839–2891.

[9]

Wan, D.; Xi, Y. J.; Li, S. F.; Pan, J. Progress on nanocarriers in responsive to tumor microenvironment. Chem. Ind. Eng. 2021, 38, 80–87.

[10]

Li, Y. X.; Sun, J.; Li, J. J.; Liu, K.; Zhang, H. J. Engineered protein nanodrug as an emerging therapeutic tool. Nano Res. 2022, 15, 5161–5172.

[11]

Zhao, D. C.; Yang, N. L.; Xu, L. K.; Du, J.; Yang, Y.; Wang, D. Hollow structures as drug carriers: Recognition, response, and release. Nano Res. 2022, 15, 739–757.

[12]

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

[13]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[14]

Barenholz, Y. Doxil®-the first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134.

[15]

Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal doxorubicin: Review of animal and human studies. Clin. Pharmacokinet. 2003, 42, 419–436.

[16]

Attia, M. F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T. F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019, 71, 1185–1198.

[17]

Han, X. J.; Alu, A.; Liu, H. M.; Shi, Y.; Wei, X. W.; Cai, L. L.; Wei, Y. Q. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact. Mater. 2022, 17, 29–48.

[18]

Jin, Q.; Deng, Y. Y.; Chen, X. H.; Ji, J. Rational design of cancer nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano 2019, 13, 954–977.

[19]

Wang, Y. Q.; Li, S. M.; Wang, X. H.; Chen, Q.; He, Z. G.; Luo, C.; Sun, J. Smart transformable nanomedicines for cancer therapy. Biomaterials 2021, 271, 120737.

[20]

Chong, G. W.; Zang, J.; Han, Y.; Su, R. P.; Weeranoppanant, N.; Dong, H. Q.; Li, Y. Y. Bioengineering of nano metal-organic frameworks for cancer immunotherapy. Nano Res. 2021, 14, 1244–1259.

[21]
Fan, M. L.; Liu, W.; Fan, C. Y.; Zheng, X. Y.; Hui, J. F.; Hu, C. Q.; Fan, D. D. Ce and Se co-doped MBG/SA/HLC microgel bone powder for repairing tumor bone defects. Nano Res., in press, https://doi.org/10.1007/s12274-022-4630-x.
[22]

El-Sawy, H. S.; Al-Abd, A. M.; Ahmed, T. A.; El-Say, K. M.; Torchilin, V. P. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano 2018, 12, 10636–10664.

[23]

Grzelczak, M.; Liz-Marzan, L. M.; Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 2019, 48, 1342–1361.

[24]

Van Der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W. J. M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol. 2019, 14, 1007–1017.

[25]

Li, Z. M.; Yang, Y.; Wei, H. X.; Shan, X. T.; Wang, X. Z.; Ou, M. T.; Liu, Q. Y.; Gao, N. S.; Chen, H. Z.; Mei, L. et al. Charge-reversal biodegradable MSNs for tumor synergetic chemo/photothermal and visualized therapy. J. Control. Release 2021, 338, 719–730.

[26]

Zhong, Q.; Zhang, J. H.; Guo, R. W. Facile preparation of hollow mesoporous silica nanoparticles coated with pH-sensitive polymer. Chem. Ind. Eng. 2017, 34, 50–54.

[27]

Zhu, X. H.; Li, C.; Lu, Y.; Liu, Y. J.; Wan, D.; Zhu, D. W.; Pan, J.; Ma, G. L. Tumor microenvironment-activated therapeutic peptide-conjugated prodrug nanoparticles for enhanced tumor penetration and local T cell activation in the tumor microenvironment. Acta Biomater. 2021, 119, 337–348.

[28]

Liu, Y. J.; Lu, Y.; Zhu, X. H.; Li, C.; Yan, M. M.; Pan, J.; Ma, G. L. Tumor microenvironment-responsive prodrug nanoplatform via co-self-assembly of photothermal agent and IDO inhibitor for enhanced tumor penetration and cancer immunotherapy. Biomaterials 2020, 242, 119933.

[29]
Xue, X. D.; Qu, H. J.; Li, Y. P. Stimuli-responsive crosslinked nanomedicine for cancer treatment. Exploration, in press, https://doi.org/10.1002/EXP.20210134.
[30]

Shahriari, M.; Zahiri, M.; Abnous, K.; Taghdisi, S. M.; Ramezani, M.; Alibolandi, M. Enzyme responsive drug delivery systems in cancer treatment. J. Control. Release 2019, 308, 172–189.

[31]

Li, L.; Yang, Z.; Chen, X. Y. Recent advances in stimuli-responsive platforms for cancer immunotherapy. Acc. Chem. Res. 2020, 53, 2044–2054.

[32]

Liu, H. H.; Yang, F. W.; Chen, W. J.; Gong, T.; Zhou, Y.; Dai, X. Y.; Leung, W.; Xu, C. S. Enzyme-responsive materials as carriers for improving photodynamic therapy. Front. Chem. 2021, 9, 763057.

[33]

Braun, A. C.; Gutmann, M.; Ebert, R.; Jakob, F.; Gieseler, H.; Lühmann, T.; Meinel, L. Matrix metalloproteinase responsive delivery of myostatin inhibitors. Pharm. Res. 2017, 34, 58–72.

[34]

Han, H. J.; Valdepérez, D.; Jin, Q.; Yang, B.; Li, Z. H.; Wu, Y. L.; Pelaz, B.; Parak, W. J.; Ji, J. Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano 2017, 11, 1281–1291.

[35]

Han, M.; Huang-Fu, M. Y.; Guo, W. W.; Guo, N. N.; Chen, J. J.; Liu, H. N.; Xie, Z. Q.; Lin, M. T.; Wei, Q. C.; Gao, J. Q. MMP-2-sensitive HA end-conjugated poly(amidoamine) dendrimers via click reaction to enhance drug penetration into solid tumor. ACS Appl. Mater. Interfaces 2017, 9, 42459–42470.

[36]

Ke, W. D.; Zha, Z. S.; Mukerabigwi, J. F.; Chen, W. J.; Wang, Y. H.; He, C. X.; Ge, Z. S. Matrix metalloproteinase-responsive multifunctional peptide-linked amphiphilic block copolymers for intelligent systemic anticancer drug delivery. Bioconjugate Chem. 2017, 28, 2190–2198.

[37]

Lv, Y. Q.; Xu, C. R.; Zhao, X. M.; Lin, C. S.; Yang, X.; Xin, X. F.; Zhang, L.; Qin, C.; Han, X. P.; Yang, L. et al. Nanoplatform assembled from a CD44-targeted prodrug and smart liposomes for dual targeting of tumor microenvironment and cancer cells. ACS Nano 2018, 12, 1519–1536.

[38]

Yao, Q.; Kou, L. F.; Tu, Y.; Zhu, L. MMP-responsive “smart” drug delivery and tumor targeting. Trends Pharmacol. Sci. 2018, 39, 766–781.

[39]

Pan, J.; Li, P. J.; Wang, Y.; Chang, L.; Wan, D.; Wang, H. Active targeted drug delivery of MMP-2 sensitive polymeric nanoparticles. Chem. Commun. 2018, 54, 11092–11095.

[40]

Porter, A. G.; Jänicke, R. U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6, 99–104.

[41]

Shalini, S.; Dorstyn, L.; Dawar, S.; Kumar, S. Old, new and emerging functions of caspases. Cell Death Differ. 2015, 22, 526–539.

[42]

Shi, Y. G. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 2002, 9, 459–470.

[43]

Riedl, S. J.; Salvesen, G. S. The apoptosome: Signalling platform of cell death. Nat. Rev. Mol. Cell Biol. 2007, 8, 405–413.

[44]

Riedl, S. J.; Shi, Y. G. Molecular mechanisms of caspase regulation during apoptosis. Nat. Rev. Mol. Cell Biol. 2004, 5, 897–907.

[45]

Yuan, Y. Y.; Kwok, R. T. K.; Tang, B. Z.; Liu, B. Targeted theranostic platinum(IV) prodrug with a built-in aggregation-induced emission light-up apoptosis sensor for noninvasive early evaluation of its therapeutic responses in situ. J. Am. Chem. Soc. 2014, 136, 2546–2554.

[46]

Pan, J.; Wan, D.; Bian, Y. X.; Guo, Y. G.; Jin, F. M.; Wang, T.; Gong, J. L. Reduction of nonspecific binding for cellular imaging using quantum dots conjugated with vitamin E. AIChE J. 2014, 60, 1591–1597.

[47]

Yu, M.; Liu, K.; Mao, Z. B.; Luo, J. Y.; Gu, W.; Zhao, W. H. USP11 is a negative regulator to γH2AX ubiquitylation by RNF8/RNF168. J. Biol. Chem. 2016, 291, 959–967.

[48]

Wan, D.; Li, S. F.; Zhang, J. X.; Ma, G. L.; Pan, J. Intelligent self-assembly prodrug micelles loading doxorubicin in response to tumor microenvironment for targeted tumors therapy. Chin. J. Chem. Eng. 2021, 39, 219–227.

[49]

Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y. et al. Precise nanomedicine for intelligent therapy of cancer. Sci. China Chem. 2018, 61, 1503–1552.

[50]

Chandrashekar, D. S.; Bashel, B.; Balasubramanya, S. A. H.; Creighton, C. J.; Ponce-Rodriguez, I.; Chakravarthi, B. V. S. K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649–658.

[51]

Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.

Nano Research
Pages 2851-2858
Cite this article:
Wan D, Zhu Q, Zhang J, et al. Intracellular and extracellular enzymatic responsive micelle for intelligent therapy of cancer. Nano Research, 2023, 16(2): 2851-2858. https://doi.org/10.1007/s12274-022-4967-1
Topics:

1341

Views

18

Crossref

17

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 26 July 2022
Revised: 24 August 2022
Accepted: 25 August 2022
Published: 14 October 2022
© Tsinghua University Press 2022
Return