Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report a high-throughput approach to generating lanthanide-doped upconversion nanoparticle (UCNP) arrays through polymer pen lithography (PPL), where instead of the expensive block co-polymer, two types of polymers are employed with one working as ink carrier, e.g., polyethylene glycol-400 (PEG-400) to facilitate smooth transfer from the tip to the substrate and the other, e.g., polyvinyl pyrrolidone (PVP), as chelator to ensure successful patterning of metal ions. The strong coordination of PVP with rare earth ions (RE3+) is the key for weakening the interaction between RE3+ ions and the carrier PEG-400 so that the good mobility of ink can be retained. Further experimental results have shown that besides PVP, small molecules with functional groups that can coordinate with RE3+ ions, such as oleic acid, can also serve the same role as PVP, which greatly enriches the ink library for PPL. Over 1 cm2 area arrays comprising individual UCNP can be reliably generated with characteristic upconversion luminescence. This strategy not only allows reliable production of individual UCNP arrays, it also paves new avenue to the precise synthesis of multifunctional NPs for lasing, imaging, encryption, and anticounterfeiting.
Kar, A.; Patra, A. Impacts of core–shell structures on properties of lanthanide-based nanocrystals: Crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale 2012, 4, 3608–3619.
Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.
Gorris, H. H.; Wolfbeis, O. S. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem., Int. Ed. 2013, 52, 3584–3600.
Tian, G.; Gu, Z. J.; Zhou, L. J.; Yin, W. Y.; Liu, X. X.; Yan, L.; Jin, S.; Ren, W. L.; Xing, G. M.; Li, S. J. et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv. Mater. 2012, 24, 1226–1231.
Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.
Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 1996, 273, 1185–1189.
Xie, H. B.; Zhang, J. N.; Wang, F.; Shen, D. Y.; Wang, J.; Tang, D. Y. High-power 1,640 nm Er:Y2O3 ceramic laser at room temperature. Opt. Lett. 2022, 47, 246–248.
Sun, L. D.; Dong, H.; Zhang, P. Z.; Yan, C. H. Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem. 2015, 66, 619–642.
Zhang, H. X.; Chen, Z. H.; Liu, X.; Zhang, F. A mini-review on recent progress of new sensitizers for luminescence of lanthanide doped nanomaterials. Nano Res. 2020, 13, 1795–1809.
Kostyuk, A. B.; Vorotnov, A. D.; Ivanov, A. V.; Volovetskiy, A. B.; Kruglov, A. V.; Sencha, L. M.; Liang, L. E.; Guryev, E. L.; Vodeneev, V. A.; Deyev, S. M. et al. Resolution and contrast enhancement of laser-scanning multiphoton microscopy using thulium-doped upconversion nanoparticles. Nano Res. 2019, 12, 2933–2940.
Mor, F. M.; Sienkiewicz, A.; Forró, L.; Jeney, S. Upconversion particle as a local luminescent Brownian probe: A photonic force microscopy study. ACS Photonics 2014, 1, 1251–1257.
Lu, Y. Q.; Zhao, J. B.; Zhang, R.; Liu, Y. J.; Liu, D. M.; Goldys, E. M.; Yang, X. S.; Xi, P.; Sunna, A.; Lu, J. et al. Tunable lifetime multiplexing using luminescent nanocrystals. Nat. Photonics 2014, 8, 32–36.
You, W. W.; Tu, D. T.; Li, R. F.; Zheng, W.; Chen, X. Y. “Chameleon-like” optical behavior of lanthanide-doped fluoride nanoplates for multilevel anti-counterfeiting applications. Nano Res. 2019, 12, 1417–1422.
Hartman, T.; Geitenbeek, R. G.; Whiting, G. T.; Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2019, 2, 986–996.
Xie, S. T.; Du, Y. L.; Zhang, Y.; Wang, Z. M.; Zhang, D. L.; He, L.; Qiu, L. P.; Jiang, J. H.; Tan, W. H. Aptamer-based optical manipulation of protein subcellular localization in cells. Nat. Commun. 2020, 11, 1347.
Ke, J. X.; Lu, S.; Li, Z.; Shang, X. Y.; Li, X. J.; Li, R. F.; Tu, D. T.; Chen, Z.; Chen, X. Y. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes. Nano Res. 2020, 13, 1955–1961.
Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–684.
Richards, B. S.; Hudry, D.; Busko, D.; Turshatov, A.; Howard, I. A. Photon upconversion for photovoltaics and photocatalysis: A critical review. Chem. Rev. 2021, 121, 9165–9195.
Liu, X. Y.; Liu, W. D.; Yang, B. Deep-elliptical-silver-nanowell arrays (d-EAgNWAs) fabricated by stretchable imprinting combining colloidal lithography: A highly sensitive plasmonic sensing platform. Nano Res. 2019, 12, 845–853.
Bhingardive, V.; Menahem, L.; Schvartzman, M. Soft thermal nanoimprint lithography using a nanocomposite mold. Nano Res. 2018, 11, 2705–2714.
Williams, G.; Hunt, M.; Boehm, B.; May, A.; Taverne, M.; Ho, D.; Giblin, S.; Read, D.; Rarity, J.; Allenspach, R. et al. Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 2017, 11, 845–854.
Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. “Dip-pen” nanolithography. Science 1999, 283, 661–663.
Demers, L. M.; Ginger, D. S.; Park, S. J.; Li, Z.; Chung, S. W.; Mirkin, C. A. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 2002, 296, 1836–1838.
Lim, J. H.; Ginger, D. S.; Lee, K. B.; Heo, J.; Nam, J. M.; Mirkin, C. A. Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angew. Chem., Int. Ed. 2003, 42, 2309–2312.
Huang, L.; Braunschweig, A. B.; Shim, W.; Qin, L. D.; Lim, J. K.; Hurst, S. J.; Huo, F. W.; Xue, C.; Jang, J. W.; Mirkin, C. A. Matrix-assisted dip-pen nanolithography and polymer pen lithography. Small 2010, 6, 1077–1081.
Du, J. S.; Chen, P. C.; Meckes, B.; Kluender, E. J.; Xie, Z.; Dravid, V. P.; Mirkin, C. A. Windowless observation of evaporation-induced coarsening of Au-Pt nanoparticles in polymer nanoreactors. J. Am. Chem. Soc. 2018, 140, 7213–7221.
Qin, L. D.; Park, S.; Huang, L.; Mirkin, C. A. On-wire lithography. Science 2005, 309, 113–115.
Sanedrin, R. G.; Huang, L.; Jang, J. W.; Kakkassery, J.; Mirkin, C. A. Polyethylene glycol as a novel resist and sacrificial material for generating positive and negative nanostructures. Small 2008, 4, 920–924.
Chai, J. N.; Huo, F. W.; Zheng, Z. J.; Giam, L. R.; Shim, W.; Mirkin, C. A. Scanning probe block copolymer lithography. Proc. Natl. Acad. Sci. USA 2010, 107, 20202–20206.
Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Q. Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565–1569.
Ali, F. M.; Kershi, R. M. Synthesis and characterization of La3+ ions incorporated (PVA/PVP) polymer composite films for optoelectronics devices. J. Mater. Sci. Mater. Electron. 2020, 31, 2557–2566.
Kumar, B.; Kaur, G.; Rai, S. B. Sensitized green emission of terbium with dibenzoylmethane and 1,10-phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 187, 75–81.
Chai, J. N.; Liao, X.; Giam, L. R.; Mirkin, C. A. Nanoreactors for studying single nanoparticle coarsening. J. Am. Chem. Soc. 2012, 134, 158–161.
Xing, M. M.; Cao, W. H.; Zhong, H. Y.; Zhang, Y. H.; Luo, X. X.; Fu, Y.; Feng, W.; Pang, T.; Yang, X. F. Synthesis and upconversion luminescence properties of monodisperse Y2O3: Yb, Ho spherical particles. J. Alloys Compd. 2011, 509, 5725–5730.
Eichelsdoerfer, D. J.; Liao, X.; Cabezas, M. D.; Morris, W.; Radha, B.; Brown, K. A.; Giam, L. R.; Braunschweig, A. B.; Mirkin, C. A. Large-area molecular patterning with polymer pen lithography. Nat. Protoc. 2013, 8, 2548–2560.