AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Well-structured 3D channels within GO-based membranes enable ultrafast wastewater treatment

Huaqiang Fu1,§Zhe Wang2,3,§Peng Li2( )Wei Qian2Zixin Zhang1Xin Zhao2Hao Feng1Zhugen Yang4Zongkui Kou1,3( )Daping He1,2( )
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
Hubei Engineering Research Center of RF-Microwave Technology and Application, School of Science, Wuhan University of Technology, Wuhan 430070, China
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK

§ Huaqiang Fu and Zhe Wang contributed equally to this work.

Show Author Information

Graphical Abstract

The well-structured three-dimensional (3D) water channels within graphene oxide (GO)-based membranes can synchronize ultrahigh water permeance and purification performance for highly efficient wastewater treatment.

Abstract

Graphene oxide (GO)-based membranes have been widely studied for realizing efficient wastewater treatment, due to their easily functionalizeable surfaces and tunable interlayer structures. However, the irregular structure of water channels within GO-based membrane has largely confined water permeance and prevented the simultaneously improvement of purification performance. Herein, we purposely construct the well-structured three-dimensional (3D) water channels featuring regular and negatively-charged properties in the GO/SiO2 composite membrane via in situ close-packing assembly of SiO2 nanoparticles onto GO nanosheets. Such regular 3D channels can improve the water permeance to a record-high value of 33,431.5 ± 559.9 L·m−2·h−1 (LMH) bar−1, which is several-fold higher than those of current state-of-the-art GO-based membranes. We further demonstrate that benefiting from negative charges on both GO and SiO2, these negatively-charged 3D channels enable the charge selectivity well toward dye in wastewater where the rejection for positive-charged and negative-charged dye molecules is 99.6% vs. 7.2%, respectively. The 3D channels can also accelerate oil/water (O/W) separation process, in which the O/W permeance and oil rejection can reach 19,589.2 ± 1,189.7 LMH bar−1 and 98.2%, respectively. The present work unveils the positive role of well-structured 3D channels on synchronizing the remarkable improvement of both water permeance and purification performance for highly efficient wastewater treatment.

Electronic Supplementary Material

Video
12274_2022_4970_MOESM1_ESM.avi
12274_2022_4970_MOESM2_ESM.avi
Download File(s)
12274_2022_4970_MOESM3_ESM.pdf (1.8 MB)

References

[1]

Mekonnen, M. M.; Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323.

[2]
Butler, E.; Hung, Y. T.; Al Ahmad, M.; Fu, Y. P. Treatment and management of industrial dye wastewater for water resources protection. In Natural Resources and Control Processes; Wang, L. K.; Wang, M. H. S.; Hung, Y. T.; Shammas, N. K. , Eds.; Springer International Publishing: Cham, 2016; pp 187–232.
[3]

Grant, S. B.; Saphores, J. D.; Feldman, D. L.; Hamilton, A. J.; Fletcher, T. D.; Cook, P. L. M.; Stewardson, M.; Sanders, B. F.; Levin, L. A.; Ambrose, R. F. et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 2012, 337, 681–686.

[4]

Jassby, D.; Cath, T. Y.; Buisson, H. The role of nanotechnology in industrial water treatment. Nat. Nanotechnol. 2018, 13, 670–672.

[5]

Alvarez, P. J. J.; Chan, C. K.; Elimelech, M.; Halas, N. J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641.

[6]

Obotey Ezugbe, E.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89.

[7]

Shi, Z.; Zhang, W. B.; Zhang, F.; Liu, X.; Wang, D.; Jin, J.; Jiang, L. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv. Mater. 2013, 25, 2422–2427.

[8]

Idris, S. N. A.; Jullok, N. Evaluation of commercial reverse osmosis and forward osmosis membranes at different draw solution concentration in pressure retarded osmosis process. Mater. Today Proc. 2021, 46, 2065–2069.

[9]

Huang, H. B.; Ying, Y. L.; Peng, X. S. Graphene oxide nanosheet: An emerging star material for novel separation membranes. J. Mater. Chem. A 2014, 2, 13772–13782.

[10]

Sun, M.; Li, J. H. Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today 2018, 20, 121–137.

[11]

Shen, J.; Liu, G. P.; Han, Y.; Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.

[12]

Wang, W. T.; Eftekhari, E.; Zhu, G. S.; Zhang, X. W.; Yan, Z. F.; Li, Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chem. Commun. 2014, 50, 13089–13092.

[13]

Huang, H. B.; Song, Z. G.; Wei, N.; Shi, L.; Mao, Y. Y.; Ying, Y. L.; Sun, L. W.; Xu, Z. P.; Peng, X. S. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 2013, 4, 2979.

[14]

Gao, S. J.; Qin, H. L.; Liu, P. P.; Jin, J. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. J. Mater. Chem. A 2015, 3, 6649–6654.

[15]

Liu, Y. N.; Su, Y. L.; Guan, J. Y.; Cao, J. L.; Zhang, R. N.; He, M. R.; Gao, K.; Zhou, L. J.; Jiang, Z. Y. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation. Adv. Funct. Mater. 2018, 28, 1706545.

[16]

Bhol, P.; Yadav, S.; Altaee, A.; Saxena, M.; Misra, P. K.; Samal, A. K. Graphene-based membranes for water and wastewater treatment: A review. ACS Appl. Nano Mater. 2021, 4, 3274–3293.

[17]

Keskin, B.; Ersahin, M. E.; Ozgun, H.; Koyuncu, I. Pilot and full-scale applications of membrane processes for textile wastewater treatment: A critical review. J. Water Process Eng. 2021, 42, 102172.

[18]

Zhang, W. Y.; Xu, H.; Xie, F.; Ma, X. H.; Niu, B.; Chen, M. Q.; Zhang, H. Y.; Zhang, Y. Y.; Long, D. H. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 2022, 13, 471.

[19]

Zheng, K.; Li, S.; Chen, Z.; Chen, Y.; Hong, Y.; Lan, W. Highly stable graphene oxide composite nanofiltration membrane. Nanoscale 2021, 13, 10061–10066.

[20]

Deng, H. H.; Zheng, Q. W.; Chen, H. B.; Huang, J.; Yan, H. D.; Ma, M. X.; Xia, M.; Pei, K. M.; Ni, H. G.; Ye, P. Graphene oxide/silica composite nanofiltration membrane: Adjustment of the channel of water permeation. Sep. Purif. Technol. 2021, 278, 119440.

[21]

Feng, X. D.; Imran, Q.; Zhang, Y. Z.; Sixdenier, L.; Lu, X. L.; Kaufman, G.; Gabinet, U.; Kawabata, K.; Elimelech, M.; Osuji, C. O. Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuous transport pathways. Sci. Adv. 2019, 5, eaav9308.

[22]

Yousefi, N.; Lu, X. L.; Elimelech, M.; Tufenkji, N. Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 2019, 14, 107–119.

[23]

Xu, Z. W.; Li, X. H.; Teng, K. Y.; Zhou, B. M.; Ma, M. J.; Shan, M. J.; Jiao, K. Y.; Qian, X. M.; Fan, J. T. High flux and rejection of hierarchical composite membranes based on carbon nanotube network and ultrathin electrospun nanofibrous layer for dye removal. J. Memb. Sci. 2017, 535, 94–102.

[24]

Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530.

[25]

Liu, G. G.; Ye, H. Q.; Li, A. T.; Zhu, C. Y.; Jiang, H.; Liu, Y.; Han, K.; Zhou, Y. H. Graphene oxide for high-efficiency separation membranes: Role of electrostatic interactions. Carbon 2016, 110, 56–61.

[26]

Hong, S.; Constans, C.; Surmani Martins, M. V.; Seow, Y. C.; Guevara Carrió, J. A.; Garaj, S. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 2017, 17, 728–732.

[27]

Seo, D. H.; Pineda, S.; Woo, Y. C.; Xie, M.; Murdock, A. T.; Ang, E. Y. M.; Jiao, Y. L.; Park, M. J.; Lim, S. I; Lawn, M. et al. Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 2018, 9, 683.

[28]

Boukhvalov, D. W.; Katsnelson, M. I.; Son, Y. W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 2013, 13, 3930–3935.

[29]

Aba, N. F. D.; Chong, J. Y.; Wang, B.; Mattevi, C.; Li, K. Graphene oxide membranes on ceramic hollow fibers-microstructural stability and nanofiltration performance. J. Memb. Sci. 2015, 484, 87–94.

[30]

Lai, G. S.; Lau, W. J.; Goh, P. S.; Ismail, A. F.; Yusof, N.; Tan, Y. H. Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 2016, 387, 14–24.

[31]

Li, J.; Cui, J. C.; Yang, J. Y.; Ma, Y.; Qiu, H. X.; Yang, J. H. Silanized graphene oxide reinforced organofunctional silane composite coatings for corrosion protection. Prog. Org. Coatings 2016, 99, 443–451.

[32]

Chen, S. L.; Dong, P.; Yang, G. H.; Yang, J. J. Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate. Ind. Eng. Chem. Res. 1996, 35, 4487–4493.

[33]

Zhou, X.; Shi, T. J. One-pot hydrothermal synthesis of a mesoporous SiO2-graphene hybrid with tunable surface area and pore size. Appl. Surf. Sci. 2012, 259, 566–573.

[34]

Kou, L.; Gao, C. Making silicananoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale 2011, 3, 519–528.

[35]

Xu, W. L.; Fang, C.; Zhou, F. L.; Song, Z. N.; Liu, Q. L.; Qiao, R.; Yu, M. Self-assembly: A facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett. 2017, 17, 2928–2933.

[36]

Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 2017, 16, 1198–1202.

[37]

Zhuravlev, L. T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 1–38.

[38]

Wang, Z.; Mao, B. Y.; Zhao, M.; Calatayud, D. G.; Qian, W.; Li, P.; Hu, Z. G.; Fu, H. Q.; Zhao, X.; Yan, S. L. et al. Ultrafast macroscopic assembly of high-strength graphene oxide membranes by implanting an interlaminar superhydrophilic aisle. ACS Nano 2022, 16, 3934–3942.

[39]

Zhang, W. H.; Yin, M. J.; Zhao, Q.; Jin, C. G.; Wang, N. X.; Ji, S. L.; Ritt, C. L.; Elimelech, M.; An, Q. F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol. 2021, 16, 337–343.

[40]

Ritt, C. L.; Werber, J. R.; Deshmukh, A.; Elimelech, M. Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: Implications for permeability and selectivity. Environ. Sci. Technol. 2019, 53, 6214–6224.

[41]

Liu, Y.; Zhang, F. R.; Zhu, W. X.; Su, D.; Sang, Z. Y.; Yan, X.; Li, S.; Liang, J.; Dou, S. X. A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal. Carbon 2020, 160, 88–97.

[42]

Sun, J. W.; Bi, H. C.; Su, S.; Jia, H. Y.; Xie, X.; Sun, L. T. One-step preparation of GO/SiO2 membrane for highly efficient separation of oil-in-water emulsion. J. Memb. Sci. 2018, 553, 131–138.

[43]

He, Y. C.; Yang, J.; Kan, W. Q.; Zhang, H. M.; Liu, Y. Y.; Ma, J. F. A new microporous anionic metal-organic framework as a platform for highly selective adsorption and separation of organic dyes. J. Mater. Chem. A 2015, 3, 1675–1681.

[44]

Ranjan, P.; Verma, P.; Agrawal, S.; Rao, T. R.; Samanta, S. K.; Thakur, A. D. Inducing dye-selectivity in graphene oxide for cationic dye separation applications. Mater. Chem. Phys. 2019, 226, 350–355.

[45]

Bhattacharyya, A.; Ghorai, S.; Rana, D.; Roy, I.; Sarkar, G.; Saha, N. R.; Orasugh, J. T.; De, S.; Sadhukhan, S.; Chattopadhyay, D. Design of an efficient and selective adsorbent of cationic dye through activated carbon-graphene oxide nanocomposite: Study on mechanism and synergy. Mater. Chem. Phys. 2021, 260, 124090.

[46]

Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425.

[47]

Junaidi, N. F. D.; Othman, N. H.; Fuzil, N. S.; Mat Shayuti, M. S.; Alias, N. H.; Shahruddin, M. Z.; Marpani, F.; Lau, W. J.; Ismail, A. F.; Aba, N. F. D. Recent development of graphene oxide-based membranes for oil-water separation: A review. Sep. Purif. Technol. 2021, 258, 118000.

[48]

Scherer, M. D.; Oliveira, S. L.; Lima, S. M.; Andrade, L. H. C.; Caires, A. R. L. Determination of the biodiesel content in diesel/biodiesel blends: A method based on fluorescence spectroscopy. J. Fluoresc. 2011, 21, 1027–1031.

Nano Research
Pages 1826-1834
Cite this article:
Fu H, Wang Z, Li P, et al. Well-structured 3D channels within GO-based membranes enable ultrafast wastewater treatment. Nano Research, 2023, 16(2): 1826-1834. https://doi.org/10.1007/s12274-022-4970-6
Topics:

1034

Views

10

Crossref

12

Web of Science

11

Scopus

2

CSCD

Altmetrics

Received: 13 August 2022
Revised: 22 August 2022
Accepted: 25 August 2022
Published: 03 September 2022
© Tsinghua University Press 2022
Return