Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Graphene oxide (GO)-based membranes have been widely studied for realizing efficient wastewater treatment, due to their easily functionalizeable surfaces and tunable interlayer structures. However, the irregular structure of water channels within GO-based membrane has largely confined water permeance and prevented the simultaneously improvement of purification performance. Herein, we purposely construct the well-structured three-dimensional (3D) water channels featuring regular and negatively-charged properties in the GO/SiO2 composite membrane via in situ close-packing assembly of SiO2 nanoparticles onto GO nanosheets. Such regular 3D channels can improve the water permeance to a record-high value of 33,431.5 ± 559.9 L·m−2·h−1 (LMH) bar−1, which is several-fold higher than those of current state-of-the-art GO-based membranes. We further demonstrate that benefiting from negative charges on both GO and SiO2, these negatively-charged 3D channels enable the charge selectivity well toward dye in wastewater where the rejection for positive-charged and negative-charged dye molecules is 99.6% vs. 7.2%, respectively. The 3D channels can also accelerate oil/water (O/W) separation process, in which the O/W permeance and oil rejection can reach 19,589.2 ± 1,189.7 LMH bar−1 and 98.2%, respectively. The present work unveils the positive role of well-structured 3D channels on synchronizing the remarkable improvement of both water permeance and purification performance for highly efficient wastewater treatment.
Mekonnen, M. M.; Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323.
Grant, S. B.; Saphores, J. D.; Feldman, D. L.; Hamilton, A. J.; Fletcher, T. D.; Cook, P. L. M.; Stewardson, M.; Sanders, B. F.; Levin, L. A.; Ambrose, R. F. et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 2012, 337, 681–686.
Jassby, D.; Cath, T. Y.; Buisson, H. The role of nanotechnology in industrial water treatment. Nat. Nanotechnol. 2018, 13, 670–672.
Alvarez, P. J. J.; Chan, C. K.; Elimelech, M.; Halas, N. J.; Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 2018, 13, 634–641.
Obotey Ezugbe, E.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89.
Shi, Z.; Zhang, W. B.; Zhang, F.; Liu, X.; Wang, D.; Jin, J.; Jiang, L. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Adv. Mater. 2013, 25, 2422–2427.
Idris, S. N. A.; Jullok, N. Evaluation of commercial reverse osmosis and forward osmosis membranes at different draw solution concentration in pressure retarded osmosis process. Mater. Today Proc. 2021, 46, 2065–2069.
Huang, H. B.; Ying, Y. L.; Peng, X. S. Graphene oxide nanosheet: An emerging star material for novel separation membranes. J. Mater. Chem. A 2014, 2, 13772–13782.
Sun, M.; Li, J. H. Graphene oxide membranes: Functional structures, preparation and environmental applications. Nano Today 2018, 20, 121–137.
Shen, J.; Liu, G. P.; Han, Y.; Jin, W. Q. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 2021, 6, 294–312.
Wang, W. T.; Eftekhari, E.; Zhu, G. S.; Zhang, X. W.; Yan, Z. F.; Li, Q. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chem. Commun. 2014, 50, 13089–13092.
Huang, H. B.; Song, Z. G.; Wei, N.; Shi, L.; Mao, Y. Y.; Ying, Y. L.; Sun, L. W.; Xu, Z. P.; Peng, X. S. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 2013, 4, 2979.
Gao, S. J.; Qin, H. L.; Liu, P. P.; Jin, J. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. J. Mater. Chem. A 2015, 3, 6649–6654.
Liu, Y. N.; Su, Y. L.; Guan, J. Y.; Cao, J. L.; Zhang, R. N.; He, M. R.; Gao, K.; Zhou, L. J.; Jiang, Z. Y. 2D heterostructure membranes with sunlight-driven self-cleaning ability for highly efficient oil-water separation. Adv. Funct. Mater. 2018, 28, 1706545.
Bhol, P.; Yadav, S.; Altaee, A.; Saxena, M.; Misra, P. K.; Samal, A. K. Graphene-based membranes for water and wastewater treatment: A review. ACS Appl. Nano Mater. 2021, 4, 3274–3293.
Keskin, B.; Ersahin, M. E.; Ozgun, H.; Koyuncu, I. Pilot and full-scale applications of membrane processes for textile wastewater treatment: A critical review. J. Water Process Eng. 2021, 42, 102172.
Zhang, W. Y.; Xu, H.; Xie, F.; Ma, X. H.; Niu, B.; Chen, M. Q.; Zhang, H. Y.; Zhang, Y. Y.; Long, D. H. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 2022, 13, 471.
Zheng, K.; Li, S.; Chen, Z.; Chen, Y.; Hong, Y.; Lan, W. Highly stable graphene oxide composite nanofiltration membrane. Nanoscale 2021, 13, 10061–10066.
Deng, H. H.; Zheng, Q. W.; Chen, H. B.; Huang, J.; Yan, H. D.; Ma, M. X.; Xia, M.; Pei, K. M.; Ni, H. G.; Ye, P. Graphene oxide/silica composite nanofiltration membrane: Adjustment of the channel of water permeation. Sep. Purif. Technol. 2021, 278, 119440.
Feng, X. D.; Imran, Q.; Zhang, Y. Z.; Sixdenier, L.; Lu, X. L.; Kaufman, G.; Gabinet, U.; Kawabata, K.; Elimelech, M.; Osuji, C. O. Precise nanofiltration in a fouling-resistant self-assembled membrane with water-continuous transport pathways. Sci. Adv. 2019, 5, eaav9308.
Yousefi, N.; Lu, X. L.; Elimelech, M.; Tufenkji, N. Environmental performance of graphene-based 3D macrostructures. Nat. Nanotechnol. 2019, 14, 107–119.
Xu, Z. W.; Li, X. H.; Teng, K. Y.; Zhou, B. M.; Ma, M. J.; Shan, M. J.; Jiao, K. Y.; Qian, X. M.; Fan, J. T. High flux and rejection of hierarchical composite membranes based on carbon nanotube network and ultrathin electrospun nanofibrous layer for dye removal. J. Memb. Sci. 2017, 535, 94–102.
Park, H. B.; Kamcev, J.; Robeson, L. M.; Elimelech, M.; Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530.
Liu, G. G.; Ye, H. Q.; Li, A. T.; Zhu, C. Y.; Jiang, H.; Liu, Y.; Han, K.; Zhou, Y. H. Graphene oxide for high-efficiency separation membranes: Role of electrostatic interactions. Carbon 2016, 110, 56–61.
Hong, S.; Constans, C.; Surmani Martins, M. V.; Seow, Y. C.; Guevara Carrió, J. A.; Garaj, S. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 2017, 17, 728–732.
Seo, D. H.; Pineda, S.; Woo, Y. C.; Xie, M.; Murdock, A. T.; Ang, E. Y. M.; Jiao, Y. L.; Park, M. J.; Lim, S. I; Lawn, M. et al. Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 2018, 9, 683.
Boukhvalov, D. W.; Katsnelson, M. I.; Son, Y. W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 2013, 13, 3930–3935.
Aba, N. F. D.; Chong, J. Y.; Wang, B.; Mattevi, C.; Li, K. Graphene oxide membranes on ceramic hollow fibers-microstructural stability and nanofiltration performance. J. Memb. Sci. 2015, 484, 87–94.
Lai, G. S.; Lau, W. J.; Goh, P. S.; Ismail, A. F.; Yusof, N.; Tan, Y. H. Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance. Desalination 2016, 387, 14–24.
Li, J.; Cui, J. C.; Yang, J. Y.; Ma, Y.; Qiu, H. X.; Yang, J. H. Silanized graphene oxide reinforced organofunctional silane composite coatings for corrosion protection. Prog. Org. Coatings 2016, 99, 443–451.
Chen, S. L.; Dong, P.; Yang, G. H.; Yang, J. J. Kinetics of formation of monodisperse colloidal silica particles through the hydrolysis and condensation of tetraethylorthosilicate. Ind. Eng. Chem. Res. 1996, 35, 4487–4493.
Zhou, X.; Shi, T. J. One-pot hydrothermal synthesis of a mesoporous SiO2-graphene hybrid with tunable surface area and pore size. Appl. Surf. Sci. 2012, 259, 566–573.
Kou, L.; Gao, C. Making silicananoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings. Nanoscale 2011, 3, 519–528.
Xu, W. L.; Fang, C.; Zhou, F. L.; Song, Z. N.; Liu, Q. L.; Qiao, R.; Yu, M. Self-assembly: A facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett. 2017, 17, 2928–2933.
Yang, Q.; Su, Y.; Chi, C.; Cherian, C. T.; Huang, K.; Kravets, V. G.; Wang, F. C.; Zhang, J. C.; Pratt, A.; Grigorenko, A. N. et al. Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 2017, 16, 1198–1202.
Zhuravlev, L. T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 1–38.
Wang, Z.; Mao, B. Y.; Zhao, M.; Calatayud, D. G.; Qian, W.; Li, P.; Hu, Z. G.; Fu, H. Q.; Zhao, X.; Yan, S. L. et al. Ultrafast macroscopic assembly of high-strength graphene oxide membranes by implanting an interlaminar superhydrophilic aisle. ACS Nano 2022, 16, 3934–3942.
Zhang, W. H.; Yin, M. J.; Zhao, Q.; Jin, C. G.; Wang, N. X.; Ji, S. L.; Ritt, C. L.; Elimelech, M.; An, Q. F. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotechnol. 2021, 16, 337–343.
Ritt, C. L.; Werber, J. R.; Deshmukh, A.; Elimelech, M. Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: Implications for permeability and selectivity. Environ. Sci. Technol. 2019, 53, 6214–6224.
Liu, Y.; Zhang, F. R.; Zhu, W. X.; Su, D.; Sang, Z. Y.; Yan, X.; Li, S.; Liang, J.; Dou, S. X. A multifunctional hierarchical porous SiO2/GO membrane for high efficiency oil/water separation and dye removal. Carbon 2020, 160, 88–97.
Sun, J. W.; Bi, H. C.; Su, S.; Jia, H. Y.; Xie, X.; Sun, L. T. One-step preparation of GO/SiO2 membrane for highly efficient separation of oil-in-water emulsion. J. Memb. Sci. 2018, 553, 131–138.
He, Y. C.; Yang, J.; Kan, W. Q.; Zhang, H. M.; Liu, Y. Y.; Ma, J. F. A new microporous anionic metal-organic framework as a platform for highly selective adsorption and separation of organic dyes. J. Mater. Chem. A 2015, 3, 1675–1681.
Ranjan, P.; Verma, P.; Agrawal, S.; Rao, T. R.; Samanta, S. K.; Thakur, A. D. Inducing dye-selectivity in graphene oxide for cationic dye separation applications. Mater. Chem. Phys. 2019, 226, 350–355.
Bhattacharyya, A.; Ghorai, S.; Rana, D.; Roy, I.; Sarkar, G.; Saha, N. R.; Orasugh, J. T.; De, S.; Sadhukhan, S.; Chattopadhyay, D. Design of an efficient and selective adsorbent of cationic dye through activated carbon-graphene oxide nanocomposite: Study on mechanism and synergy. Mater. Chem. Phys. 2021, 260, 124090.
Bi, H. C.; Xie, X.; Yin, K. B.; Zhou, Y. L.; Wan, S.; He, L. B.; Xu, F.; Banhart, F.; Sun, L. T.; Ruoff, R. S. Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 2012, 22, 4421–4425.
Junaidi, N. F. D.; Othman, N. H.; Fuzil, N. S.; Mat Shayuti, M. S.; Alias, N. H.; Shahruddin, M. Z.; Marpani, F.; Lau, W. J.; Ismail, A. F.; Aba, N. F. D. Recent development of graphene oxide-based membranes for oil-water separation: A review. Sep. Purif. Technol. 2021, 258, 118000.
Scherer, M. D.; Oliveira, S. L.; Lima, S. M.; Andrade, L. H. C.; Caires, A. R. L. Determination of the biodiesel content in diesel/biodiesel blends: A method based on fluorescence spectroscopy. J. Fluoresc. 2011, 21, 1027–1031.