Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In spite of the explosive rise of research on memristive switching, more improvements in tunability, versatility, and hetero-integration are required through the discovery and application of novel materials. Herein, we report resistance switching in nano-thick two-dimensional (2D) crystals of bismuth selenium (BiSe). The BiSe devices exhibit nonvolatile bipolar resistance switching, volatile switching, and electrical bistable behavior in different conditions. The different memristive behavior of BiSe devices may be related to the concentration of Bi ions in this Bi-rich structure, which directly affects the capability of filaments forming. Furthermore, the external mechanical strain is applied in modulation of multi-layer BiSe devices. The memristive BiSe devices show a large on/off ratio of ~ 104 and retention time of ~ 104 s. The discovery of memristive switching behavior in multi-layer BiSe is attributed to the forming of Bi filaments. The resistance switching behavior in multi-layer BiSe demonstrates the potential application in the flexible memories and functional integrated devices.
Chua, L. Memristor-the missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519.
Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S. The missing memristor found. Nature 2008, 453, 80–83.
Liu, H. T.; Hua, Q. L.; Yu, R. M.; Yang, Y. C.; Zhang, T. P.; Zhang, Y. J.; Pan, C. F. A bamboo-like GaN microwire-based piezotronic memristor. Adv. Funct. Mater. 2016, 26, 5307–5314.
Huh, W.; Lee, D.; Lee, C. H. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 2020, 32, 2002092.
Sun, L. F.; Wang, Z. R.; Jiang, J. B.; Kim, Y.; Joo, B.; Zheng, S. J.; Lee, S.; Yu, W. J.; Kong, B. S.; Yang, H. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 2021, 7, eabg1455.
Wang, R.; Shi, T.; Zhang, X. M.; Wei, J. S.; Lu, J.; Zhu, J. X.; Wu, Z. H.; Liu, Q.; Liu, M. Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization. Nat. Commun. 2022, 13, 2289.
Von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist. Comput. 1993, 15, 27–75.
Han, X.; Xu, Z. S.; Wu, W. Q.; Liu, X. H.; Yan, P. G.; Pan, C. F. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 2020, 1, 2000029.
Tong, L.; Peng, Z. R.; Lin, R. F.; Li, Z.; Wang, Y. L.; Huang, X. Y.; Xue, K. H.; Xu, H. Y.; Liu, F.; Xia, H. et al. 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware. Science 2021, 373, 1353–1358.
Wong, H. S. P.; Lee, H. Y.; Yu, S. M.; Chen, Y. S.; Wu, Y.; Chen, P. S.; Lee, B.; Chen, F. T.; Tsai, M. J. Metal-oxide RRAM. Proc. IEEE 2012, 100, 1951–1970.
Choi, J.; Han, J. S.; Hong, K.; Kim, S. Y.; Jang, H. W. Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 2018, 30, 1704002.
Zhang, C.; Li, Y.; Ma, C. L.; Zhang, Q. C. Recent progress of organic–inorganic hybrid perovskites in RRAM, artificial synapse, and logic operation. Small Sci. 2022, 2, 2100086.
Sangwan, V. K.; Jariwala, D.; Kim, I. S.; Chen, K. S.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 2015, 10, 403–406.
Lin, W. P.; Liu, S. J.; Gong, T.; Zhao, Q.; Huang, W. Polymer-based resistive memory materials and devices. Adv. Mater. 2014, 26, 570–606.
Liu, L.; Dong, J.; Liu, J.; Liang, Q.; Song, Y. R.; Li, W. H.; Lei, S. B.; Hu, W. P. High-quality two-dimensional metal-organic framework nanofilms for nonvolatile memristive switching. Small Struct. 2021, 2, 2000077.
Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S. Y.; Colombo, L.; Bonaccorso, F.; Samori, P. Nonvolatile memories based on graphene and related 2D materials. Adv. Mater. 2019, 31, 1806663.
Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.
Voiry, D.; Yang, J.; Chhowalla, M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv. Mater. 2016, 28, 6197–6206.
Chen, F.; Tang, Q.; Ma, T.; Zhu, B. H.; Wang, L. Y.; He, C.; Luo, X. L.; Cao, S. J.; Ma, L.; Cheng, C. Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors. InfoMat 2022, 4, e12299.
Yang, H.; Heo, J.; Park, S.; Song, H. J.; Seo, D. H.; Byun, K. E.; Kim, P.; Yoo, I.; Chung, H. J.; Kim, K. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 2012, 336, 1140–1143.
Kim, S.; Konar, A.; Hwang, W. S.; Lee, J. H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J. B.; Choi, J. Y. et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011.
Zhang, Q.; Zuo, S. L.; Chen, P.; Pan, C. F. Piezotronics in two-dimensional materials. InfoMat 2021, 3, 987–1007.
Wu, P. S.; He, T.; Zhu, H.; Wang, Y.; Li, Q.; Wang, Z.; Fu, X.; Wang, F.; Wang, P.; Shan, C. X. et al. Next-generation machine vision systems incorporating two-dimensional materials: Progress and perspectives. InfoMat 2022, 4, e12275.
Ning, J.; Wang, J.; Li, X. L.; Qiu, T. F.; Luo, B.; Hao, L.; Liang, M. H.; Wang, B.; Zhi, L. J. A fast room-temperature strategy for direct reduction of graphene oxide films towards flexible transparent conductive films. J. Mater. Chem. A 2014, 2, 10969–10973.
Bao, R. R.; Tao, J.; Pan, C. F.; Wang, Z. L. Piezophototronic effect in nanosensors. Small Sci. 2021, 1, 2000060.
Zhang, X. Y.; Wen, F. S.; Xiang, J. Y.; Wang, X. C.; Wang, L. M.; Hu, W. T.; Liu, Z. Y. Wearable non-volatile memory devices based on topological insulator Bi2Se3/Pt fibers. Appl. Phys. Lett. 2015, 107, 103109.
Yin, C. J.; Gong, C. H.; Tian, S. Y.; Cui, Y.; Wang, X. P.; Wang, Y.; Hu, Z. H.; Huang, J. W.; Wu, C. Y.; Chen, B. et al. Low-energy oxygen plasma injection of 2D Bi2Se3 realizes highly controllable resistive random access memory. Adv. Funct. Mater. 2022, 32, 2108455.
Wang, M.; Cai, S. H.; Pan, C.; Wang, C. Y.; Lian, X. J.; Zhuo, Y.; Xu, K.; Cao, T. J.; Pan, X. Q.; Wang, B. G. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136.
Jadwiszczak, J.; Keane, D.; Maguire, P.; Cullen, C. P.; Zhou, Y. B.; Song, H. D.; Downing, C.; Fox, D.; McEvoy, N.; Zhu, R. et al. MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 2019, 13, 14262–14273.
Zhu, X. J.; Li, D.; Liang, X. G.; Lu, W. D. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater. 2019, 18, 141–148.
Wang, X. W.; Wang, B. L.; Zhang, Q. H.; Sun, Y. F.; Wang, E. Z.; Luo, H.; Wu, Y. H.; Gu, L.; Li, H. L.; Liu, K. Grain-boundary engineering of monolayer MoS2 for energy-efficient lateral synaptic devices. Adv. Mater. 2021, 33, 2102435.
Sangwan, V. K.; Lee, H. S.; Bergeron, H.; Balla, I.; Beck, M. E.; Chen, K. S.; Hersam, M. C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504.
Xu, R. J.; Jang, H.; Lee, M. H.; Amanov, D.; Cho, Y.; Kim, H.; Park, S.; Shin, H. J.; Ham, D. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett. 2019, 19, 2411–2417.
Jo, S.; Cho, S.; Yang, U. J.; Hwang, G. S.; Baek, S.; Kim, S. H.; Heo, S. H.; Kim, J. Y.; Choi, M. K.; Son, J. S. Solution-processed stretchable Ag2S semiconductor thin films for wearable self-powered nonvolatile memory. Adv. Mater. 2021, 33, 2100066.
Samanta, M.; Pal, K.; Pal, P.; Waghmare, U. V.; Biswas, K. Localized vibrations of Bi bilayer leading to ultralow lattice thermal conductivity and high thermoelectric performance in weak topological insulator n-type BiSe. J. Am. Chem. Soc. 2018, 140, 5866–5872.
Maiti, R.; Patil, C.; Saadi, M. A. S. R.; Xie, T.; Azadani, J. G.; Uluutku, B.; Amin, R.; Briggs, A. F.; Miscuglio, M.; Van Thourhout, D. et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics 2020, 14, 578–584.
Lind, H.; Lidin, S.; Häussermann, U. Structure and bonding properties of (Bi2Se3)m(Bi2)n stacks by first-principles density functional theory. Phys. Rev. B 2005, 72, 184101.
Majhi, K.; Pal, K.; Lohani, H.; Banerjee, A.; Mishra, P.; Yadav, A. K.; Ganesan, R.; Sekhar, B. R.; Waghmare, U. V.; Kumar, P. S. A. Emergence of a weak topological insulator from the BixSey family. Appl. Phys. Lett. 2017, 110, 162102.
Li, Y.; Zhong, Y. P.; Zhang, J. J.; Xu, X. H.; Wang, Q.; Xu, L.; Sun, H. J.; Miao, X. S. Intrinsic memristance mechanism of crystalline stoichiometric Ge2Sb2Te5. Appl. Phys. Lett. 2013, 103, 043501.
Pandian, R.; Kooi, B. J.; Palasantzas, G.; De Hosson, J. T. M.; Pauza, A. Polarity-dependent reversible resistance switching in Ge-Sb-Te phase-change thin films. Appl. Phys. Lett. 2007, 91, 152103.
Woo, J.; Jung, S.; Siddik, M.; Cha, E.; Sadaf, S. M.; Hwang, H. Effect of interfacial oxide layer on the switching uniformity of Ge2Sb2Te5-based resistive change memory devices. Appl. Phys. Lett. 2011, 99, 162109.
Yoo, S.; Eom, T.; Gwon, T.; Hwang, C. S. Bipolar resistive switching behavior of an amorphous Ge2Sb2Te5 thin films with a Te layer. Nanoscale 2015, 7, 6340–6347.
Koza, J. A.; Bohannan, E. W.; Switzer, J. A. Superconducting filaments formed during nonvolatile resistance switching in electrodeposited δ-Bi2O3. ACS Nano 2013, 7, 9940–9946.
Yang, Y.; Du, H. Y.; Xue, Q.; Wei, X. H.; Yang, Z. B.; Xu, C. G.; Lin, D. M.; Jie, W. J.; Hao, J. H. Three-terminal memtransistors based on two-dimensional layered gallium selenide nanosheets for potential low-power electronics applications. Nano Energy 2019, 57, 566–573.
Springholz, G.; Wimmer, S.; Groiss, H.; Albu, M.; Hofer, F.; Caha, O.; Kriegner, D.; Stangl, J.; Bauer, G.; Holý, V. Structural disorder of natural BimSen superlattices grown by molecular beam epitaxy. Phys. Rev. Mater. 2018, 2, 054202.
Kang, M.; Chai, H. J.; Jeong, H. B.; Park, C.; Jung, I. Y.; Park, E.; Cicek, M. M.; Lee, I.; Bae, B. S.; Durgun, E. et al. Low-temperature and high-quality growth of Bi2O2Se layered semiconductors via cracking metal-organic chemical vapor deposition. ACS Nano 2021, 15, 8715–8723.
Kuznetsov, P. I.; Yakushcheva, G. G.; Shchamkhalova, B. S.; Luzanov, V. A.; Temiryazev, A. G.; Jitov, V. A. Metalorganic vapor phase epitaxy of ternary rhombohedral (Bi1−xSbx)2Se3 solid solutions. J. Cryst. Growth 2016, 433, 114–121.
Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407–2414.
Das, S. K.; Padhan, P. Surface-induced enhanced band gap in the (0001) surface of Bi2Se3 nanocrystals: Impacts on the topological effect. ACS Appl. Nano Mater. 2020, 3, 274–282.
Lu, X. F.; Zhang, Y. S.; Wang, N. Z.; Luo, S.; Peng, K. L.; Wang, L.; Chen, H.; Gao, W. B.; Chen, X. H.; Bao, Y. et al. Exploring low power and ultrafast memristor on p-type van der waals SnS. Nano Lett. 2021, 21, 8800–8807.
Zhang, J. S.; Sun, J.; Li, Y. B.; Shi, F. F.; Cui, Y. Electrochemical control of copper intercalation into nanoscale Bi2Se3. Nano Lett. 2017, 17, 1741–1747.
Liu, Z. H.; Yao, X.; Shao, J. F.; Zuo, M.; Pi, L.; Tan, S.; Zhang, C. J.; Zhang, Y. H. Superconductivity with topological surface state in SrxBi2Se3. J. Am. Chem. Soc. 2015, 137, 10512–10515.
Kumari, P.; Singh, R.; Awasthi, K.; Ichikawa, T.; Kumar, M.; Jain, A. Highly stable nanostructured Bi2Se3 anode material for all solid-state lithium-ion batteries. J. Alloys Compd. 2020, 838, 155403.
Chen, Z. Y.; Yang, Y. R.; Ma, Z. H.; Zhu, T.; Liu, L.; Zheng, J.; Gong, X. All-solid-state asymmetric supercapacitors with metal selenides electrodes and ionic conductive composites electrolytes. Adv. Funct. Mater. 2019, 29, 1904182.
Wang, Y.; Yang, J.; Wang, Z. P.; Chen, J. R.; Yang, Q.; Lv, Z. Y.; Zhou, Y.; Zhai, Y. B.; Li, Z. X.; Han, S. T. Near-infrared annihilation of conductive filaments in quasiplane MoSe2/Bi2Se3 nanosheets for mimicking heterosynaptic plasticity. Small 2019, 15, 1805431.
Zhang, X.; Lai, Z. C.; Liu, Z. D.; Tan, C. L.; Huang, Y.; Li, B.; Zhao, M. T.; Xie, L. H.; Huang, W.; Zhang, H. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem., Int. Ed. 2015, 54, 5425–5428.
Huang, X.; Zheng, B.; Liu, Z. D.; Tan, C. L.; Liu, J. Q.; Chen, B.; Li, H.; Chen, J. Z.; Zhang, X.; Fan, Z. X. et al. Coating two-dimensional nanomaterials with metal-organic frameworks. ACS Nano 2014, 8, 8695–8701.
Lv, W. Z.; Wang, H. L.; Jia, L. L.; Tang, X. X.; Lin, C.; Yuwen, L. H.; Wang, L. H.; Huang, W.; Chen, R. F. Tunable nonvolatile memory behaviors of PCBM-MoS2 2D nanocomposites through surface deposition ratio control. ACS Appl. Mater. Interfaces 2018, 10, 6552–6559.
Wu, C. X.; Li, F. S.; Zhang, Y. A.; Guo, T. L. Recoverable electrical transition in a single graphene sheet for application in nonvolatile memories. Appl. Phys. Lett. 2012, 100, 042105.