AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Self-powered electrochemical water treatment system for pollutant degradation and bacterial inactivation based on high-efficient Co(OH)2/Pt electrocatalyst

Zhuo Wang1,§Xi Liang1,2,§Zhirong Liu1,2,§Tian Huang3,1,§Shaobo Wang3Shuncheng Yao1,2Yiming Ding3,1Jiaming Zhang1,2Xingyi Wan1,2Zhong Lin Wang1,3,4( )Linlin Li1,2,3( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Center on Nanoenergy Research, School of physical Science and Technology, Guangxi University, Nanning 530004, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

§ Zhuo Wang, Xi Liang, Zhirong Liu, and Tian Huang contributed equally to this work.

Show Author Information

Graphical Abstract

A self-powered electrochemical water treatment system was assembled for pollutant degradation and bacterial inactivation. The system is driven by self-powered triboelectric nanogenerator to improve the efficiency of Fenton-like reaction based on the high-efficient two-dimensional Co(OH)2/Pt electrocatalyst.

Abstract

Electrochemical system with electro-Fenton reaction is an effective pathway for oxidative degradation of refractory organic pollutants for water treatment. However, the method is limited by the low catalytic efficiency and high electrical cost in practical applications. This work presents a self-powered and high-efficient electrochemical system for water treatment including pollutant degradation and bacterial inactivation, which is composed of a self-powered triboelectric nanogenerator (TENG) converting mechanical energy into electrical energy, a power management circuit integrated with a supercapacitor to store the harvesting electrical energy temporarily, and an electrochemical setup integrated with two-dimentional Co(OH)2/Pt nanosheet as electrocatalyst. The nanocatalyst, ultrafine Pt nanoparticles (Pt NPs) loaded on Co(OH)2 nanosheet (Co(OH)2/Pt), is synthesized by a facile one step hydrothermal reaction without any surfactant, which can improve H2O2 and hydroxyl radical production via redox reaction. This self-powered electrocatalytic system is able to degrade nearly 100% of organic pollutant within 100 min, and efficiently kill bacteria. This work shows great potential to develop high-efficient and self-powered electrochemical water treatment system through integrating TENG and nanocatalyst.

Electronic Supplementary Material

Download File(s)
12274_2022_4978_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Gao, S. Y.; Su, J. Z.; Wei, X. J.; Wang, M.; Tian, M.; Jiang, T.; Wang, Z. L. Self-powered electrochemical oxidation of 4-Aminoazobenzene driven by a triboelectric nanogenerator. ACS Nano 2017, 11, 770–778.

[2]

Cai, J. S.; Huang, J. Y.; Wang, S. C.; Iocozzia, J.; Sun, Z. T.; Sun, J. Y.; Yang, Y. K.; Lai, Y. K.; Lin, Z. Q. Crafting mussel-inspired metal nanoparticle-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv. Mater. 2019, 31, 1806314.

[3]

Zhang, Y. W.; Liu, F.; Yang, Z. C.; Qian, J. S.; Pan, B. C. Weakly hydrophobic nanoconfinement by graphene aerogels greatly enhances the reactivity and ambient stability of reactivity of MIL-101-Fe in Fenton-like reaction. Nano Res. 2021, 14, 2383–2389.

[4]

Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671–698.

[5]

Tehrani-Bagha, A. R.; Nikkar, H.; Mahmoodi, N. M.; Markazi, M.; Menger, F. M. The sorption of cationic dyes onto kaolin: Kinetic, isotherm and thermodynamic studies. Desalination 2011, 266, 274–280.

[6]

Xiang, D. L.; Liu, Z. R.; Wu, M. Q.; Liu, H. H.; Zhang, X. D.; Wang, Z.; Wang, Z. L.; Li, L. Enhanced piezo-photoelectric catalysis with oriented carrier migration in asymmetric Au-ZnO nanorod array. Small 2020, 16, 1907603.

[7]

Wang, S. C.; Liu, G.; Wang, L. Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 2019, 119, 5192–5247.

[8]

Ma, J. P.; Ren, J.; Jia, Y. M.; Wu, Z.; Chen, L.; Haugen, N. O.; Huang, H. T.; Liu, Y. S. High efficiency Bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 2019, 62, 376–383.

[9]

Avlonitis, S. A.; Poulios, I.; Sotiriou, D.; Pappas, M.; Moutesidis, K. Simulated cotton dye effluents treatment and reuse by nanofiltration. Desalination 2008, 221, 259–267.

[10]

Al-Bastaki, N. Removal of methyl orange dye and Na2SO4 salt from synthetic waste water using reverse osmosis. Chem. Eng. Process. Process Intensif. 2004, 43, 1561–1567.

[11]

Jiao, L.; Wang, Y.; Jiang, H. L.; Xu, Q. Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 2018, 30, 1703663.

[12]

Xie, S. Y.; Wu, S. S.; Bao, S. H.; Wang, Y. Q.; Zheng, Y. T.; Deng, D. F.; Huang, L. P.; Zhang, L. L.; Lee, M.; Huang, Z. G. Intelligent mesoporous materials for selective adsorption and mechanical release of organic pollutants from water. Adv. Mater. 2018, 30, 1800683.

[13]

Wang, B. Q.; Cheng, C.; Jin M. M.; He, J.; Zhang, H.; Ren, W.; Li, J.; Wang, D. S.; Li, Y. D. A site distance effect induced by reactant molecule matchup in single-atom catalysts for Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202207268.

[14]

Ganiyu, S. O.; de Araújo, M. J. G.; de Araújo Costa, E. C. T.; Santos, J. E. L.; dos Santos, E. V.; Martínez-Huitle, C. A.; Pergher, S. B. C. Design of highly efficient porous carbon foam cathode for electro-Fenton degradation of antimicrobial sulfanilamide. Appl. Catal. B:Environ. 2021, 283, 119652.

[15]

Li, L. J.; Hu, Z. F.; Yu, J. C. On-demand synthesis of H2O2 by water oxidation for sustainable resource production and organic pollutant degradation. Angew Chem., Int. Ed. 2020, 59, 20538–20544.

[16]

Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

[17]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[18]

Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

[19]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[20]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[21]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[22]

Campbell, C. T. Catalyst-support interactions: Electronic perturbations. Nat. Chem. 2012, 4, 597–598.

[23]

Yang J. R.; Li W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[24]

Xing, Z. C.; Han, C.; Wang, D. W.; Li, Q.; Yang, X. R. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal. 2017, 7, 7131–7135.

[25]

Leung, S. F.; Fu, H. C.; Zhang, M. L.; Hassan, A. H.; Jiang, T.; Salama, K. N.; Wang, Z. L.; He, J. H. Blue energy fuels: Converting ocean wave energy to carbon-based liquid fuels via CO2 reduction. Energy Environ. Sci. 2020, 13, 1300–1308.

[26]

Dong, K.; Deng, J. N.; Zi, Y. L.; Wang, Y. C.; Xu, C.; Zou, H. Y.; Ding, W. B.; Dai, Y. J.; Gu, B. H.; Sun, B. Z. et al. 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv. Mater. 2017, 29, 1702648.

[27]

Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 10, 2000064.

[28]

Ahmed, A.; Hassan, I.; Hedaya, M.; Abo El-Yazid, T.; Zu, J.; Wang, Z. L. Farms of triboelectric nanogenerators for harvesting wind energy: A potential approach towards green energy. Nano Energy 2017, 36, 21–29.

[29]

Huang, L. B.; Xu, W.; Bai, G. X.; Wong, M. C.; Yang, Z. B.; Hao, J. H. Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator. Nano Energy 2016, 30, 36–42.

[30]

Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Self-powered water splitting using flowing kinetic energy. Adv. Mater. 2015, 27, 272–276.

[31]

Gao, S. Y.; Zhu, Y. Z.; Chen, Y.; Tian, M.; Yang, Y. J.; Jiang, T.; Wang, Z. L. Self-power electroreduction of N2 into NH3 by 3D printed triboelectric nanogenerators. Mater. Today 2019, 28, 17–24.

[32]

Han, K.; Luo, J. J.; Feng, Y. W.; Xu, L.; Tang, W.; Wang, Z. L. Self-powered electrocatalytic ammonia synthesis directly from air as driven by dual triboelectric nanogenerators. Energy Environ. Sci. 2020, 13, 2450–2458.

[33]

Han, K.; Luo, J. J.; Feng, Y. W.; Lai, Q. S.; Bai, Y.; Tang, W.; Wang, Z. L. Wind-driven radial-engine-shaped triboelectric nanogenerators for self-powered absorption and degradation of NOx. ACS Nano 2020, 14, 2751–2759.

[34]

Feng, Y. W.; Han, K.; Jiang, T.; Bian, Z. F.; Liang, X.; Cao, X.; Li, H. X.; Wang, Z. L. Self-powered electrochemical system by combining Fenton reaction and active chlorine generation for organic contaminant treatment. Nano Res. 2019, 12, 2729–2735.

[35]

Chen, Y.; Zhu, Y. Z.; Tian, M.; Chen, C.; Jia, X. B.; Gao, S. Y. Sustainable self-powered electro-Fenton degradation of organic pollutants in wastewater using carbon catalyst with controllable pore activated by EDTA-2Na. Nano Energy 2019, 59, 346–353.

[36]

Gao, S. Y.; Chen, Y.; Su, J. Z.; Wang, M.; Wei, X. J.; Jiang, T.; Wang, Z. L. Triboelectric nanogenerator powered electrochemical degradation of organic pollutant using Pt-free carbon materials. ACS Nano 2017, 11, 3965–3972.

[37]

Gao, S. Y.; Wang, M.; Chen, Y.; Tian, M.; Zhu, Y. Z.; Wei, X. J.; Jiang, T. An advanced electro-Fenton degradation system with triboelectric nanogenerator as electric supply and biomass-derived carbon materials as cathode catalyst. Nano Energy 2018, 45, 21–27.

[38]

Zhou, L. L.; Liu, L.; Qiao, W. Y.; Gao, Y. K.; Zhao, Z. H.; Liu, D.; Bian, Z. F.; Wang, J.; Wang, Z. L. Improving degradation efficiency of organic pollutants through a self-powered alternating current electrocoagulation system. ACS Nano 2021, 15, 19684–19691.

[39]

Ma, M. Y.; Kang, Z.; Liao, Q. L.; Zhang Q.; Gao F. F.; Zhao X.; Zhang Z.; Zhang Y. Development, applications, and future directions of triboelectric nanogenerators. Nano Res. 2018, 11, 2951–2969.

[40]

Feng, Y. W.; Liang, X.; Han, J. J.; Han, K.; Jiang, T.; Li, H. X.; Wang, Z. L. Power management and reaction optimization for a self-powered electrochemical system driven by a triboelectric nanogenerator. Nano Lett. 2021, 21, 5633–5640.

[41]

Lv, S.; Xia, G. F.; Jin, C.; Hao, C. Y.; Wang, L.; Li, J. L.; Zhang, Y. H.; Zhu, J. J. Low-temperature CO oxidation by Co3O4 nanocubes on the surface of Co(OH)2 nanosheets. Catal. Commun. 2016, 86, 100–103.

[42]

Cheng, H. Y.; Meng, X. C.; Wang, Q.; Ming, J.; Yu, Y. C.; Zhao, F. Y. Fabrication of Co(OH)2 coated Pt nanoparticles as an efficient catalyst for chemoselective hydrogenation of halonitrobenzenes. J. Colloid Interf. aceSci. 2012, 377, 322–327.

Nano Research
Pages 2192-2198
Cite this article:
Wang Z, Liang X, Liu Z, et al. Self-powered electrochemical water treatment system for pollutant degradation and bacterial inactivation based on high-efficient Co(OH)2/Pt electrocatalyst. Nano Research, 2023, 16(2): 2192-2198. https://doi.org/10.1007/s12274-022-4978-y
Topics:

6160

Views

10

Crossref

5

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 28 July 2022
Revised: 26 August 2022
Accepted: 27 August 2022
Published: 04 November 2022
© Tsinghua University Press 2022
Return