Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In this study, dual-metal atomic pairs of manganese (Mn)-iron (Fe) binuclear sites (BNSs) with two conjoint MnN4 and FeN4 moieties (MnFeN8) anchored onto a graphite-like structure (GLS) (Mn-Fe BNSs/GLS) were constructed. The binuclear MnFeN8 structure was verified experimentally and theoretically. Magnetic measurements and Gaussian calculations reveal that this unique Mn-Fe BNSs exhibit strong short-range electronic interaction between Mn and Fe sites, which decouples two paired d electrons in Fe sites, thereby transforming Fe sites from an intermediate to a high spin state. The optimal electronic configuration of Fe sites and their binuclear structure facilitate an oxygen reduction reaction (ORR) thermodynamically and dynamically, respectively, endowing Mn-Fe BNSs with improved ORR performance.
Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.
Chen, K. J.; Liu, K.; An, P. D.; Li, H. J. W.; Lin, Y. Y.; Hu, J. H.; Jia, C. K.; Fu, J. W.; Li, H. M.; Liu, H. et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173.
Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275.
Zhao, C. X.; Liu, J. N.; Wang, J.; Ren, D.; Li, B. Q.; Zhang, Q. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.
Liu, Z. Y.; Zhao, Z. P.; Peng, B. S.; Duan, X. F.; Huang, Y. Beyond extended surfaces: Understanding the oxygen reduction reaction on nanocatalysts. J. Am. Chem. Soc. 2020, 142, 17812–17827.
Chattot, R.; Le Bacq, O.; Beermann, V.; Kühl, S.; Herranz, J.; Henning, S.; Kühn, L.; Asset, T.; Guétaz, L.; Renou, G. et al. Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat. Mater. 2018, 17, 827–833.
Ma, Q. L.; Jin, H. H.; Zhu, J. W.; Li, Z. L.; Xu, H. W.; Liu, B. S.; Zhang, Z. W.; Ma, J. J.; Mu, S. C. Stabilizing Fe-N-C catalysts as model for oxygen reduction reaction. Adv. Sci. 2021, 8, 2102209.
Gao, R. J.; Wang, J.; Huang, Z. F.; Zhang, R. R.; Wang, W.; Pan, L.; Zhang, J. F.; Zhu, W. K.; Zhang, X. W.; Shi, C. X. et al. Pt/Fe2O3 with Pt-Fe pair sites as a catalyst for oxygen reduction with ultralow Pt loading. Nat. Energy 2021, 6, 614–623.
Song, Z. X.; Zhang, L.; Doyle-Davis, K.; Fu, X. Z.; Luo, J. L.; Sun, X. L. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv. Energy Mater. 2020, 10, 2001561.
Wan, C. Z.; Duan, X. F.; Huang, Y. Molecular design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater. 2020, 10, 1903815.
Yu, Y.; Zhang, J. N. Optimizing configuration engineering of edge-hosted Fe-Nx active sites for oxygen reduction reaction. Chem. Catal. 2021, 1, 1155–1157.
Han, Y. H.; Wang, Y. G.; Xu, R. R.; Chen, W. X.; Zheng, L. R.; Han, A. J.; Zhu, Y. Q.; Zhang, J.; Zhang, H. B.; Luo, J. et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352.
Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.
Li, J. Z.; Zhang, H. G.; Samarakoon, W.; Shan, W. T.; Cullen, D. A.; Karakalos, S.; Chen, M. J.; Gu, D. M.; More, K. L.; Wang, G. F. et al. Thermally driven structure and performance evolution of atomically dispersed FeN4 sites for oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980.
Zhang, Y.; Huang, B. L.; Luo, G.; Sun, T.; Feng, Y. G.; Wang, Y. C.; Ma, Y. H.; Shao, Q.; Li, Y. F.; Zhou, Z. Y. et al. Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Sci. Adv. 2020, 6, eaba9731.
Lyu, X.; Jia, Y.; Mao, X.; Li, D. H.; Li, G.; Zhuang, L. Z.; Wang, X.; Yang, D. J.; Wang, Q.; Du, A. J. et al. Gradient-concentration design of stable core–shell nanostructure for acidic oxygen reduction electrocatalysis. Adv. Mater. 2020, 32, 2003493.
Li, H. G.; Di, S. L.; Niu, P.; Wang, S. L.; Wang, J.; Li, L. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 2022, 15, 1601–1610.
Alkhalifah, M. A.; Howchen, B.; Staddon, J.; Celorrio, V.; Tiwari, D.; Fermin, D. J. Correlating orbital composition and activity of LaMnxNi1–xO3 nanostructures toward oxygen electrocatalysis. J. Am. Chem. Soc. 2022, 144, 4439–4447.
Zhu, G. H.; Yang, H. Y.; Jiang, Y.; Sun, Z. Q.; Li, X. P.; Yang, J. P.; Wang, H. F.; Zou, R. J.; Jiang, W.; Qiu, P. P. et al. Modulating the electronic structure of FeCo nanoparticles in N-doped mesoporous carbon for efficient oxygen reduction reaction. Adv. Sci. 2022, 9, 2200394.
Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.
Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin N-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.
Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.
Chao, G. J.; An, X. Y.; Zhang, L. S.; Tian, J.; Fan, W.; Liu, T. X. Electron-rich platinum electrocatalysts supported onto tin oxides for efficient oxygen reduction. Compos. Commun. 2021, 24, 100603.
Zhu, T. Y.; Feng, Q. C.; Liu, S. L.; Zhang, C. Metallogel-derived 3D porous carbon nanosheet composites as an electrocatalyst for oxygen reduction reaction. Compos. Commun. 2020, 20, 100376.
Hu, J.; Cao, L. J.; Wang, Z.; Liu, J. L.; Zhang, J. J.; Cao, Y. L.; Lu, Z. G.; Cheng, H. Hollow high-entropy metal organic framework derived nanocomposite as efficient electrocatalyst for oxygen reduction reaction. Compos. Commun. 2021, 27, 100866.
Zhang, L.; Si, R. R.; Liu, H. S.; Chen, N.; Wang, Q.; Adair, K.; Wang, Z. Q.; Chen, J. T.; Song, Z. X.; Li, J. J. et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 2019, 10, 4936.
Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.
Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.
Lu, Z. Y.; Wang, B.; Hu, Y. F.; Liu, W.; Zhao, Y. F.; Yang, R. O.; Li, Z. P.; Luo, J.; Chi, B.; Jiang, Z. et al. An isolated zinc-cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem., Int. Ed. 2019, 58, 2622–2626.
Zhu, W. J.; Zhang, L.; Liu, S. H.; Li, A.; Yuan, X. T.; Hu, C. L.; Zhang, G.; Deng, W. Y.; Zang, K. T.; Luo, J. et al. Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew. Chem., Int. Ed. 2020, 59, 12664–12668.
Deng, D. J.; Qian, J. C.; Liu, X. Z.; Li, H. P.; Su, D.; Li, H. N.; Li, H. M.; Xu, L. Non-covalent interaction of atomically dispersed Cu and Zn pair sites for efficient oxygen reduction reaction. Adv. Funct. Mater. 2022, 32, 2203471.
Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.
Yin, S. H.; Yang, J.; Han, Y.; Li, G.; Wan, L. Y.; Chen, Y. H.; Chen, C.; Qu, X. M.; Jiang, Y. X.; Sun, S. G. Construction of highly active metal-containing nanoparticles and FeCo-N4 composite sites for the acidic oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 21976–21979.
He, Y. T.; Yang, X. X.; Li, Y. S.; Liu, L. T.; Guo, S. W.; Shu, C. Y.; Liu, F.; Liu, Y. N.; Tan, Q.; Wu, G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022, 12, 1216–1227.
Chen, J. Y.; Li, H.; Fan, C.; Meng, Q. W.; Tang, Y. W.; Qiu, X. Y.; Fu, G. T.; Ma, T. Y. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.
Wan, W. C.; Zhao, Y. G.; Wei, S. Q.; Triana, C. A.; Li, J. G.; Arcifa, A.; Allen, C. S.; Cao, R.; Patzke, G. R. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. Nat. Commun. 2021, 12, 5589.
Chang, Y. Q.; Hong, F.; He, C. X.; Zhang, Q. L.; Liu, J. H. Nitrogen and sulfur dual-doped non-noble catalyst using fluidic acrylonitrile telomer as precursor for efficient oxygen reduction. Adv. Mater. 2013, 25, 4794–4799.
Mi, H. W.; Li, Y. L.; Zhu, P. Y.; Chai, X. Y.; Sun, L. N.; Zhuo, H. T.; Zhang, Q. L.; He, C. X.; Liu, J. H. In situ coating of nitrogen-doped graphene-like nanosheets on silicon as a stable anode for high-performance lithium-ion batteries. J. Mater. Chem. A 2014, 2, 11254–11260.
Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 2007, 92, 1421–1432.
Yan, H. J.; Xie, Y.; Jiao, Y. Q.; Wu, A. P.; Tian, C. G.; Zhang, X. M.; Wang, L.; Fu, H. G. Holey reduced graphene oxide coupled with an Mo2N-Mo2C heterojunction for efficient hydrogen evolution. Adv. Mater. 2018, 30, 1704156.
Ye, S. H.; Luo, F. Y.; Xu, T. T.; Zhang, P. Y.; Shi, H. D.; Qin, S. Q.; Wu, J. P.; He, C. X.; Ouyang, X. P.; Zhang, Q. L. et al. Boosting the alkaline hydrogen evolution of Ru nanoclusters anchored on B/N-doped graphene by accelerating water dissociation. Nano Energy 2020, 68, 104301.
Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, F. M.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.
Shen, G. Q.; Zhang, R. R.; Pan, L.; Hou, F.; Zhao, Y. J.; Shen, Z. Y.; Mi, W. B.; Shi, C. X.; Wang, Q. F.; Zhang, X. W. et al. Regulating the spin state of FeIII by atomically anchoring on ultrathin titanium dioxide for efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 2313–2317.
Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.
Kramm, U. I.; Herranz, J.; Larouche, N.; Arruda, T. M.; Lefèvre, M.; Jaouen, F.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Mukerjee, S. et al. Structure of the catalytic sites in Fe/N/C-catalysts for O2-reduction in PEM fuel cells. Phys. Chem. Chem. Phys. 2012, 14, 11673–11688.
Lu, Y.; Li, L.; Zhang, Q.; Niu, Z. Q.; Chen, J. Electrolyte and interface engineering for solid-state sodium batteries. Joule 2018, 2, 1747–1770.
Sun, Y. M.; Sun, S. N.; Yang, H. T.; Xi, S. B.; Gracia, J.; Xu, Z. J. Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003297.