Graphical Abstract

Electrocatalytic water electrolysis, involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), two half-reactions, is an eco-friendly approach toward hydrogen production. In this work, needle-like Ru-Fe-Ni-P on NiFe foam is prepared through corrosive engineering and following a low-temperature phosphorization procedure for overall water-splitting. The as-designed Ru-Fe-Ni-P exhibits a porous needle-like structure, surface, and binder-free merits, and then can expose rich active sites, favor the transportation of mass/electron, and accelerate the reaction kinetics during catalytic process. Then, the synthesized Ru-Fe-Ni-P owns remarkable catalytic performance for HER, with 18 and 67 mV to reach 10 mA·cm−2 in alkaline and neutral media. Moreover, a low cell voltage of 1.51 V is required to produce a current of 10 mA·cm−2 in a two electrode electrolyzer with excellent stability. Interestingly, sustainable energies can power the electrolyzer effectively with abundant hydrogen generation.
Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528–4533.
Yu, W. L.; Gao, Y. X.; Chen, Z.; Zhao, Y.; Wu, Z. X.; Wang, L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin. J. Catal. 2021, 42, 1876–1902.
Wang, X.; Zhang, X. Y.; Fu, G. T.; Tang, Y. W. Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Mater. Today Energy 2021, 22, 100850.
Niu, S. W.; Cai, J. Y.; Wan, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.
Wang, H. Q. Nanostructure@metal–organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.
Wang, H. Q.; Xu, J. H.; Zhang, Q. H.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2112362.
Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 24, 2418–2423.
Song, H. R.; Wang, J. S.; Zhang, Z. F.; Shai, X. X.; Guo, Y. Z. Synergistic balancing hydrogen and hydroxyl adsorption/desorption of nickel sulfide via cation and anion dual-doping for boosting alkaline hydrogen evolution. Chem. Eng. J. 2021, 420, 129842.
Guo, X.; Wan, X.; Liu, Q. T.; Li, Y. C.; Li, W. W.; Shui, J. L. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience 2022, 2, 304–310.
Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries. Nano Res. 2021, 14, 3482–3488.
Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc–air battery. Nano Res. 2021, 14, 998–1003.
Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal–organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res. 2021, 14, 1533–1540.
Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X. X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.
Zhang, X. Y.; Liu, T. Y.; Guo, T.; Han, X. Y.; Mu, Z. Y.; Chen, Q.; Jiang, J. M.; Yan, J.; Yuan, J. R.; Wang, D. Z. et al. Controlling atomic phosphorous-mounting surfaces of ultrafine W2C nanoislands monodispersed on the carbon frameworks for enhanced hydrogen evolution. Chin. J. Catal. 2021, 42, 1798–1807.
Wu, Y. T.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098–2105.
Li, M.; Li, H.; Jiang, X. C.; Jiang, M. Q.; Zhan, X.; Fu, G. T.; Lee, J. M.; Tang, Y. W. Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. J. Mater. Chem. A 2021, 9, 2999–3006.
Deng, L. M.; Hu, F.; Ma, M. Y.; Huang, S. C.; Xiong, Y. X.; Chen, H. Y.; Li, L. L.; Peng, S. J. Electronic modulation caused by interfacial Ni–O–M (M = Ru, Ir, and Pd) bonding for accelerating hydrogen evolution kinetics. Angew. Chem. 2021, 133, 22450–22456.
Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.
Wang, C.; Li, W.; Wang, X. D.; Yu, N.; Sun, H. X.; Geng, B. Y. Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction. Nano Res. 2022, 15, 1824–1830.
Zhao, G.; Ma, W. X.; Wang, X. K.; Xing, Y. P.; Hao, S. H.; Xu, X. J. Self-water-absorption-type two-dimensional composite photocatalyst with high-efficiency water absorption and overall water-splitting performance. Adv. Powder Mater. 2022, 1, 100008.
Chen, Z.; Liu, D. Z.; Gao, Y. X.; Zhao, Y.; Xiao, W. P.; Xu, G. R.; Ma, T. Y.; Wu, Z. X.; Wang, L. Corrosive-coordinate engineering to construct 2D–3D nanostructure with trace Pt as efficient bifunctional electrocatalyst for overall water splitting. Sci. China Mater. 2022, 65, 1217–1224.
Du, J. L.; Yu, H. H.; Liu, B. S.; Hong, M. Y.; Liao, Q. L.; Zhang, Z.; Zhang, Y. Strain engineering in 2D material-based flexible optoelectronics. Small Methods 2021, 5, 2000919.
Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586.
Li, Z. J.; Wu, X. D.; Jiang, X.; Shen, B. B.; Teng, Z. S.; Sun, D. M.; Fu, G. T.; Tang, Y. W. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder Mater. 2022, 1, 100020.
Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.
Hu, F.; Yu, D. S.; Ye, M.; Wang, H.; Hao, Y. N.; Wang, L. Q.; Li, L. L.; Han, X. P.; Peng, S. J. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges. Adv. Energy Mater. 2022, 12, 2200067.
Kang, T.; Kim, K.; Kim, M.; Kim, J. Synergistic metal–oxide interaction for efficient self-reconstruction of cobalt oxide as highly active water oxidation electrocatalyst. J. Catal. 2021, 404, 80–88.
Lai, Y. Q.; Zhang, Z. T.; Zhang, Z. Y.; Tan, Y. Y.; Yu, L. Y.; Wu, W.; Wang, Z. C.; Jiang, T.; Gao, S. H.; Cheng, N. C. Electronic modulation of Pt nanoclusters through tuning the interface of Pt-SnO2 clusters for enhanced hydrogen evolution catalysis. Chem. Eng. J. 2022, 435, 135102.
Wang, W.; Wang, Z. X.; Hu, Y. C.; Liu, Y. C.; Chen, S. L. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience 2022, 2, 438–444.
Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388.
Zhang, H. J.; Maijenburg, A. W.; Li, X. P.; Schweizer, S. L.; Wehrspohn, R. B. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 2020, 30, 2003261.
Xu, Y. Y.; Duan, S. B.; Li, H. Y.; Yang, M.; Wang, S. J.; Wang, X.; Wang, R. M. Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. Nano Res. 2017, 10, 3103–3112.
Men, Y. N.; Tan, Y.; Li, P.; Cao, X. M.; Jia, S. F.; Wang, J. B.; Chen, S. L.; Luo, W. Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Appl. Catal. B: Environ. 2021, 284, 119718.
Yang, C. F.; Zhao, R.; Xiang, H.; Wu, J.; Zhong, W. D.; Li, W. L.; Zhang, Q.; Yang, N. J.; Li, X. K. Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions. Adv. Energy Mater. 2020, 10, 2002260.
Chen, P. R.; Ye, J. S.; Wang, H.; Ouyang, L. Z.; Zhu, M. Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting. J. Alloys Compd. 2021, 883, 160833.
Li, M. R.; Zheng, K. T.; Zhang, J. J.; Li, X. M.; Xu, C. J. Design and construction of 2D/2D sheet-on-sheet transition metal sulfide/phosphide heterostructure for efficient oxygen evolution reaction. Appl. Surf. Sci. 2021, 565, 150510.
Han, H. C.; Yang, J. J.; Li, X. Y.; Qi, Y.; Yang, Z. Y.; Han, Z. J.; Jiang, Y. Y.; Stenzel, M.; Li, H.; Yin, Y. X. et al. Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Res. 2021, 14, 2512–2534.
Sun, Y. K.; Liu, T.; Li, Z. J.; Meng, A. L.; Li, G. C.; Wang, L.; Li, S. X. Morphology and interfacial charge regulation strategies constructing 3D flower-like Co@CoP2 heterostructure electrocatalyst for efficient overall water splitting. Chem. Eng. J. 2022, 433, 133684.
Chinnadurai, D.; Rajendiran, R.; Li, O. L.; Prabakar, K. Mn-Co bimetallic phosphate on electrodeposited PANI nanowires with composition modulated structural morphology for efficient electrocatalytic water splitting. Appl. Catal. B: Environ. 2021, 292, 120202.
Yang, Q. F.; Jin, P.; Liu, B.; Zhao, L.; Cai, J. H.; Wei, Z.; Zuo, S. W.; Zhang, J.; Feng, L. Ultrafine carbon encapsulated NiRu alloys as bifunctional electrocatalysts for boosting overall water splitting: Morphological and electronic modulation through minor Ru alloying. J. Mater. Chem. A 2020, 8, 9049–9057.
Hao, S. Y.; Chen, L. C.; Yu, C. L.; Yang, B.; Li, Z. J.; Hou, Y.; Lei, L. C.; Zhang, X. W. NiCoMo hydroxide nanosheet arrays synthesized via chloride corrosion for overall water splitting. ACS Energy Lett. 2019, 4, 952–959.
Yu, X. W.; Zhao, J.; Johnsson, M. Interfacial engineering of nickel hydroxide on cobalt phosphide for alkaline water electrocatalysis. Adv. Funct. Mater. 2021, 31, 2101578.
Bian, X. J.; Zhu, J.; Liao, L.; Scanlon, M. D.; Ge, P. Y.; Ji, C.; Girault, H. H.; Liu, B. H. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochem. Commun. 2012, 22, 128–132.
Pei, H. J.; Zhang, L. M.; Zhi, G.; Kong, D. Z.; Wang, Y.; Huang, S. Z.; Zang, J. H.; Xu, T. T.; Wang, H.; Li, X. J. Rational construction of hierarchical porous FeP nanorod arrays encapsulated in polypyrrole for efficient and durable hydrogen evolution reaction. Chem. Eng. J. 2022, 433, 133643.
Liu, C. C.; Han, Y.; Yao, L. B.; Liang, L. M.; He, J. Y.; Hao, Q. Y.; Zhang, J.; Li, Y.; Liu, H. Engineering bimetallic NiFe-based hydroxides/selenides heterostructure nanosheet arrays for highly-efficient oxygen evolution reaction. Small 2021, 17, 2007334.
Wang, F.; Niu, S. W.; Liang, X. Q.; Wang, G. M.; Chen, M. H. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 2022, 15, 2855–2861.
Xue, H. Y.; Meng, A. L.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in-situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, 14, 4173–4181.
Zhou, S. Q.; Yang, Y. T.; Zhang, W. Y.; Rao, X. F.; Yan, P. X.; Isimjan, T. T.; Yang, X. L. Structure-regulated Ru particles decorated P-vacancy-rich CoP as a highly active and durable catalyst for NaBH4 hydrolysis. J. Colloid Interface Sci. 2021, 591, 221–228.
Li, J. C.; Zhang, C.; Zhang, C.; Ma, H. J.; Guo, Z. Q.; Zhong, C. L.; Xu, M.; Wang, X. J.; Wang, Y. Y.; Ma, H. X. et al. Green electrosynthesis of 5, 5′-azotetrazolate energetic materials plus energy-efficient hydrogen production using ruthenium single-atom catalysts. Adv. Mater. 2022, 34, 2203900.
Kim, D.; Qin, X. Y.; Yan, B. Y.; Piao, Y. Z. Sprout-shaped Mo-doped CoP with maximized hydrophilicity and gas bubble release for high-performance water splitting catalyst. Chem. Eng. J. 2021, 408, 127331.
Fereja, S. L.; Li, P.; Zhang, Z. W.; Guo, J. H.; Fang, Z. Y.; Li, Z. J.; He, S. J.; Chen, W. W-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction. Chem. Eng. J. 2022, 432, 134274.
Wei, C. B.; Fan, X. M.; Deng, X.; Ma, L. Z.; Zhang, X.; Liu, Q. Y.; Guo, J. X. Ruthenium doped Ni2P nanosheet arrays for active hydrogen evolution in neutral and alkaline water. Sustainable Energy Fuels 2020, 4, 1883–1890.
You, B.; Zhang, Y. D.; Jiao, Y.; Davey, K.; Qiao, S. Z. Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water. Angew. Chem. 2019, 131, 11922–11926.
Wang, K. W.; She, X. L.; Chen, S.; Liu, H. L.; Li, D. H.; Wang, Y.; Zhang, H. W.; Yang, D. J.; Yao, X. D. Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP3 and Ni2P. J. Mater. Chem. A 2018, 6, 5560–5565.
Han, W. F.; Li, X. L.; Liu, B.; Li, L. C.; Tang, H. D.; Li, Y.; Lu, C. S.; Li, X. N. Microwave assisted combustion of phytic acid for the preparation of Ni2P@C as a robust catalyst for hydrodechlorination. Chem. Commun. 2019, 55, 9279–9282.
Li, D.; Li, Z. Y.; Zou, R.; Shi, G.; Huang, Y. M.; Yang, W.; Yang, W.; Liu, C. F.; Peng, X. W. Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density. Appl. Catal. B: Environ. 2022, 307, 121170.
Li, Y.; Pan, Y.; Zhang, J. In-situ grown of Ni2P nanoparticles on 2D black phosphorus as a novel hybrid catalyst for hydrogen evolution. Int. J. Hydrog. Energy 2017, 42, 7951–7956.
Zhang, R.; Wang, G. D.; Wei, Z. H.; Teng, X.; Wang, J. J.; Miao, J. J.; Wang, Y. H.; Yang, F. X.; Zhu, X. W.; Chen, C. F. et al. A Fe–Ni5P4/Fe–Ni2P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. J. Mater. Chem. A 2021, 9, 1221–1229.
Liang, Y. H.; Liu, Q.; Asiri, A. M.; Sun, X. P.; Luo, Y. L. Self-supported FeP nanorod arrays: A cost–effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal. 2014, 4, 4065–4069.
Liu, Y.; Zhen, W. Y.; Wang, Y. H.; Liu, J. H.; Jin, L. H.; Zhang, T. Q.; Zhang, S. T.; Zhao, Y.; Song, S. Y.; Li, C. Y. et al. One-dimensional Fe2P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew. Chem. 2019, 131, 2429–2434.
Lyu, M.; Zhu, D. M.; Kong, X. Y.; Yang, Y.; Ding, S. J.; Zhou, Y. F.; Quan, H.; Duo, Y. H.; Bao, Z. R. Glutathione-depleting nanoenzyme and glucose oxidase combination for hypoxia modulation and radiotherapy enhancement. Adv. Healthc. Mater. 2020, 9, 1901819.
Shi, X. L.; An, P. F.; Zhang, Q.; Song, Q.; Jiang, D. L.; Tian, D.; Li, D. Synergy of nitrogen vacancies and Fe2P cocatalyst on graphitic carbon nitride for boosting photocatalytic CO2 conversion. Chem. Eng. J. 2022, 446, 137096.
Drouet, S.; Creus, J.; Collière, V.; Amiens, C.; García-Antón, J.; Sala, X.; Philippot, K. A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions. Chem. Commun. 2017, 53, 11713–11716.
Zhao, Z. F.; Wu, Z. J.; Zhou, L. X.; Zhang, M. H.; Li, W.; Tao, K. Y. Synthesis of a nano-nickel catalyst modified by ruthenium for hydrogenation and hydrodechlorination. Catal. Commun. 2008, 9, 2191–2194.
Su, L.; Cui, X. Z.; He, T.; Zeng, L. M.; Tian, H.; Song, Y. L.; Qi, K.; Xia, B. Y. Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chem. Sci. 2019, 10, 2019–2024.