AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Porous needle-like Fe-Ni-P doped with Ru as efficient electrocatalyst for hydrogen generation powered by sustainable energies

Yue Wang1,§Zhi Chen1,§Qichang Li1Xinping Wang1Weiping Xiao2Yunlei Fu3Guangrui Xu4Bin Li4Zhenjiang Li4Zexing Wu1( )Lei Wang1,3( )
Key Laboratory of Eco-chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Science, Nanjing Forestry University, Nanjing 210037, China
Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

§ Yue Wang and Zhi Chen contributed equally to this work.

Show Author Information

Graphical Abstract

The synthesized porous needle-like Ru-Fe-Ni-P presents excellent electrocatalytic performance for hydrogen evolution reaction (HER), with low overpotentials of 18 and 67 mV to drive 10 mA‧cm−2 in alkaline and neutral media, respectively, which can be powered by sustainable energies.

Abstract

Electrocatalytic water electrolysis, involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), two half-reactions, is an eco-friendly approach toward hydrogen production. In this work, needle-like Ru-Fe-Ni-P on NiFe foam is prepared through corrosive engineering and following a low-temperature phosphorization procedure for overall water-splitting. The as-designed Ru-Fe-Ni-P exhibits a porous needle-like structure, surface, and binder-free merits, and then can expose rich active sites, favor the transportation of mass/electron, and accelerate the reaction kinetics during catalytic process. Then, the synthesized Ru-Fe-Ni-P owns remarkable catalytic performance for HER, with 18 and 67 mV to reach 10 mA·cm−2 in alkaline and neutral media. Moreover, a low cell voltage of 1.51 V is required to produce a current of 10 mA·cm−2 in a two electrode electrolyzer with excellent stability. Interestingly, sustainable energies can power the electrolyzer effectively with abundant hydrogen generation.

Electronic Supplementary Material

Video
12274_2022_4980_MOESM2_ESM.mp4
12274_2022_4980_MOESM3_ESM.mp4
12274_2022_4980_MOESM4_ESM.mp4
12274_2022_4980_MOESM5_ESM.mp4
12274_2022_4980_MOESM6_ESM.mp4
12274_2022_4980_MOESM7_ESM.mp4
Download File(s)
12274_2022_4980_MOESM1_ESM.pdf (1.5 MB)
12274_2022_4980_MOESM8_ESM.pdf (2.1 MB)

References

[1]

Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528–4533.

[2]

Yu, W. L.; Gao, Y. X.; Chen, Z.; Zhao, Y.; Wu, Z. X.; Wang, L. Strategies on improving the electrocatalytic hydrogen evolution performances of metal phosphides. Chin. J. Catal. 2021, 42, 1876–1902.

[3]

Wang, X.; Zhang, X. Y.; Fu, G. T.; Tang, Y. W. Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Mater. Today Energy 2021, 22, 100850.

[4]

Niu, S. W.; Cai, J. Y.; Wan, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

[5]

Wang, H. Q. Nanostructure@metal–organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

[6]

Wang, H. Q.; Xu, J. H.; Zhang, Q. H.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2112362.

[7]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 24, 2418–2423.

[8]

Song, H. R.; Wang, J. S.; Zhang, Z. F.; Shai, X. X.; Guo, Y. Z. Synergistic balancing hydrogen and hydroxyl adsorption/desorption of nickel sulfide via cation and anion dual-doping for boosting alkaline hydrogen evolution. Chem. Eng. J. 2021, 420, 129842.

[9]

Guo, X.; Wan, X.; Liu, Q. T.; Li, Y. C.; Li, W. W.; Shui, J. L. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience 2022, 2, 304–310.

[10]

Hu, B. T.; Huang, A. J.; Zhang, X. J.; Chen, Z.; Tu, R. Y.; Zhu, W.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Li, Y. D. Atomic Co/Ni dual sites with N/P-coordination as bifunctional oxygen electrocatalyst for rechargeable zinc–air batteries. Nano Res. 2021, 14, 3482–3488.

[11]

Wu, W. J.; Liu, Y.; Liu, D.; Chen, W. X.; Song, Z. Y.; Wang, X. M.; Zheng, Y. M.; Lu, N.; Wang, C. X.; Mao, J. J. et al. Single copper sites dispersed on hierarchically porous carbon for improving oxygen reduction reaction towards zinc–air battery. Nano Res. 2021, 14, 998–1003.

[12]

Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal–organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res. 2021, 14, 1533–1540.

[13]

Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X. X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.

[14]

Zhang, X. Y.; Liu, T. Y.; Guo, T.; Han, X. Y.; Mu, Z. Y.; Chen, Q.; Jiang, J. M.; Yan, J.; Yuan, J. R.; Wang, D. Z. et al. Controlling atomic phosphorous-mounting surfaces of ultrafine W2C nanoislands monodispersed on the carbon frameworks for enhanced hydrogen evolution. Chin. J. Catal. 2021, 42, 1798–1807.

[15]

Wu, Y. T.; Wang, H.; Ji, S.; Pollet, B. G.; Wang, X. Y.; Wang, R. F. Engineered porous Ni2P-nanoparticle/Ni2P-nanosheet arrays via the Kirkendall effect and Ostwald ripening towards efficient overall water splitting. Nano Res. 2020, 13, 2098–2105.

[16]

Li, M.; Li, H.; Jiang, X. C.; Jiang, M. Q.; Zhan, X.; Fu, G. T.; Lee, J. M.; Tang, Y. W. Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. J. Mater. Chem. A 2021, 9, 2999–3006.

[17]

Deng, L. M.; Hu, F.; Ma, M. Y.; Huang, S. C.; Xiong, Y. X.; Chen, H. Y.; Li, L. L.; Peng, S. J. Electronic modulation caused by interfacial Ni–O–M (M = Ru, Ir, and Pd) bonding for accelerating hydrogen evolution kinetics. Angew. Chem. 2021, 133, 22450–22456.

[18]

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X. X.; Gao, M. R.; Yu, S. H. Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects. Adv. Mater. 2021, 33, 2007100.

[19]

Wang, C.; Li, W.; Wang, X. D.; Yu, N.; Sun, H. X.; Geng, B. Y. Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction. Nano Res. 2022, 15, 1824–1830.

[20]

Zhao, G.; Ma, W. X.; Wang, X. K.; Xing, Y. P.; Hao, S. H.; Xu, X. J. Self-water-absorption-type two-dimensional composite photocatalyst with high-efficiency water absorption and overall water-splitting performance. Adv. Powder Mater. 2022, 1, 100008.

[21]

Chen, Z.; Liu, D. Z.; Gao, Y. X.; Zhao, Y.; Xiao, W. P.; Xu, G. R.; Ma, T. Y.; Wu, Z. X.; Wang, L. Corrosive-coordinate engineering to construct 2D–3D nanostructure with trace Pt as efficient bifunctional electrocatalyst for overall water splitting. Sci. China Mater. 2022, 65, 1217–1224.

[22]

Du, J. L.; Yu, H. H.; Liu, B. S.; Hong, M. Y.; Liao, Q. L.; Zhang, Z.; Zhang, Y. Strain engineering in 2D material-based flexible optoelectronics. Small Methods 2021, 5, 2000919.

[23]

Li, S. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Nanostructured metal phosphides: From controllable synthesis to sustainable catalysis. Chem. Soc. Rev. 2021, 50, 7539–7586.

[24]

Li, Z. J.; Wu, X. D.; Jiang, X.; Shen, B. B.; Teng, Z. S.; Sun, D. M.; Fu, G. T.; Tang, Y. W. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder Mater. 2022, 1, 100020.

[25]

Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Doping regulation in transition metal compounds for electrocatalysis. Chem. Soc. Rev. 2021, 50, 9817–9844.

[26]

Hu, F.; Yu, D. S.; Ye, M.; Wang, H.; Hao, Y. N.; Wang, L. Q.; Li, L. L.; Han, X. P.; Peng, S. J. Lattice-matching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges. Adv. Energy Mater. 2022, 12, 2200067.

[27]

Kang, T.; Kim, K.; Kim, M.; Kim, J. Synergistic metal–oxide interaction for efficient self-reconstruction of cobalt oxide as highly active water oxidation electrocatalyst. J. Catal. 2021, 404, 80–88.

[28]

Lai, Y. Q.; Zhang, Z. T.; Zhang, Z. Y.; Tan, Y. Y.; Yu, L. Y.; Wu, W.; Wang, Z. C.; Jiang, T.; Gao, S. H.; Cheng, N. C. Electronic modulation of Pt nanoclusters through tuning the interface of Pt-SnO2 clusters for enhanced hydrogen evolution catalysis. Chem. Eng. J. 2022, 435, 135102.

[29]

Wang, W.; Wang, Z. X.; Hu, Y. C.; Liu, Y. C.; Chen, S. L. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience 2022, 2, 438–444.

[30]

Li, S. X.; Liang, J.; Wei, P. P.; Liu, Q.; Xie, L. S.; Luo, Y. L.; Sun, X. P. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions. eScience 2022, 2, 382–388.

[31]

Zhang, H. J.; Maijenburg, A. W.; Li, X. P.; Schweizer, S. L.; Wehrspohn, R. B. Bifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater. 2020, 30, 2003261.

[32]

Xu, Y. Y.; Duan, S. B.; Li, H. Y.; Yang, M.; Wang, S. J.; Wang, X.; Wang, R. M. Au/Ni12P5 core/shell single-crystal nanoparticles as oxygen evolution reaction catalyst. Nano Res. 2017, 10, 3103–3112.

[33]

Men, Y. N.; Tan, Y.; Li, P.; Cao, X. M.; Jia, S. F.; Wang, J. B.; Chen, S. L.; Luo, W. Tailoring the 3d-orbital electron filling degree of metal center to boost alkaline hydrogen evolution electrocatalysis. Appl. Catal. B: Environ. 2021, 284, 119718.

[34]

Yang, C. F.; Zhao, R.; Xiang, H.; Wu, J.; Zhong, W. D.; Li, W. L.; Zhang, Q.; Yang, N. J.; Li, X. K. Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions. Adv. Energy Mater. 2020, 10, 2002260.

[35]

Chen, P. R.; Ye, J. S.; Wang, H.; Ouyang, L. Z.; Zhu, M. Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting. J. Alloys Compd. 2021, 883, 160833.

[36]

Li, M. R.; Zheng, K. T.; Zhang, J. J.; Li, X. M.; Xu, C. J. Design and construction of 2D/2D sheet-on-sheet transition metal sulfide/phosphide heterostructure for efficient oxygen evolution reaction. Appl. Surf. Sci. 2021, 565, 150510.

[37]

Han, H. C.; Yang, J. J.; Li, X. Y.; Qi, Y.; Yang, Z. Y.; Han, Z. J.; Jiang, Y. Y.; Stenzel, M.; Li, H.; Yin, Y. X. et al. Shining light on transition metal sulfides: New choices as highly efficient antibacterial agents. Nano Res. 2021, 14, 2512–2534.

[38]

Sun, Y. K.; Liu, T.; Li, Z. J.; Meng, A. L.; Li, G. C.; Wang, L.; Li, S. X. Morphology and interfacial charge regulation strategies constructing 3D flower-like Co@CoP2 heterostructure electrocatalyst for efficient overall water splitting. Chem. Eng. J. 2022, 433, 133684.

[39]

Chinnadurai, D.; Rajendiran, R.; Li, O. L.; Prabakar, K. Mn-Co bimetallic phosphate on electrodeposited PANI nanowires with composition modulated structural morphology for efficient electrocatalytic water splitting. Appl. Catal. B: Environ. 2021, 292, 120202.

[40]

Yang, Q. F.; Jin, P.; Liu, B.; Zhao, L.; Cai, J. H.; Wei, Z.; Zuo, S. W.; Zhang, J.; Feng, L. Ultrafine carbon encapsulated NiRu alloys as bifunctional electrocatalysts for boosting overall water splitting: Morphological and electronic modulation through minor Ru alloying. J. Mater. Chem. A 2020, 8, 9049–9057.

[41]

Hao, S. Y.; Chen, L. C.; Yu, C. L.; Yang, B.; Li, Z. J.; Hou, Y.; Lei, L. C.; Zhang, X. W. NiCoMo hydroxide nanosheet arrays synthesized via chloride corrosion for overall water splitting. ACS Energy Lett. 2019, 4, 952–959.

[42]

Yu, X. W.; Zhao, J.; Johnsson, M. Interfacial engineering of nickel hydroxide on cobalt phosphide for alkaline water electrocatalysis. Adv. Funct. Mater. 2021, 31, 2101578.

[43]

Bian, X. J.; Zhu, J.; Liao, L.; Scanlon, M. D.; Ge, P. Y.; Ji, C.; Girault, H. H.; Liu, B. H. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochem. Commun. 2012, 22, 128–132.

[44]

Pei, H. J.; Zhang, L. M.; Zhi, G.; Kong, D. Z.; Wang, Y.; Huang, S. Z.; Zang, J. H.; Xu, T. T.; Wang, H.; Li, X. J. Rational construction of hierarchical porous FeP nanorod arrays encapsulated in polypyrrole for efficient and durable hydrogen evolution reaction. Chem. Eng. J. 2022, 433, 133643.

[45]

Liu, C. C.; Han, Y.; Yao, L. B.; Liang, L. M.; He, J. Y.; Hao, Q. Y.; Zhang, J.; Li, Y.; Liu, H. Engineering bimetallic NiFe-based hydroxides/selenides heterostructure nanosheet arrays for highly-efficient oxygen evolution reaction. Small 2021, 17, 2007334.

[46]

Wang, F.; Niu, S. W.; Liang, X. Q.; Wang, G. M.; Chen, M. H. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 2022, 15, 2855–2861.

[47]

Xue, H. Y.; Meng, A. L.; Zhang, H. Q.; Lin, Y. S.; Li, Z. J.; Wang, C. S. 3D urchin like V-doped CoP in-situ grown on nickel foam as bifunctional electrocatalyst for efficient overall water-splitting. Nano Res. 2021, 14, 4173–4181.

[48]

Zhou, S. Q.; Yang, Y. T.; Zhang, W. Y.; Rao, X. F.; Yan, P. X.; Isimjan, T. T.; Yang, X. L. Structure-regulated Ru particles decorated P-vacancy-rich CoP as a highly active and durable catalyst for NaBH4 hydrolysis. J. Colloid Interface Sci. 2021, 591, 221–228.

[49]

Li, J. C.; Zhang, C.; Zhang, C.; Ma, H. J.; Guo, Z. Q.; Zhong, C. L.; Xu, M.; Wang, X. J.; Wang, Y. Y.; Ma, H. X. et al. Green electrosynthesis of 5, 5′-azotetrazolate energetic materials plus energy-efficient hydrogen production using ruthenium single-atom catalysts. Adv. Mater. 2022, 34, 2203900.

[50]

Kim, D.; Qin, X. Y.; Yan, B. Y.; Piao, Y. Z. Sprout-shaped Mo-doped CoP with maximized hydrophilicity and gas bubble release for high-performance water splitting catalyst. Chem. Eng. J. 2021, 408, 127331.

[51]

Fereja, S. L.; Li, P.; Zhang, Z. W.; Guo, J. H.; Fang, Z. Y.; Li, Z. J.; He, S. J.; Chen, W. W-doping induced abundant active sites in a 3D NiS2/MoO2 heterostructure as an efficient electrocatalyst for urea oxidation and hydrogen evolution reaction. Chem. Eng. J. 2022, 432, 134274.

[52]

Wei, C. B.; Fan, X. M.; Deng, X.; Ma, L. Z.; Zhang, X.; Liu, Q. Y.; Guo, J. X. Ruthenium doped Ni2P nanosheet arrays for active hydrogen evolution in neutral and alkaline water. Sustainable Energy Fuels 2020, 4, 1883–1890.

[53]

You, B.; Zhang, Y. D.; Jiao, Y.; Davey, K.; Qiao, S. Z. Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water. Angew. Chem. 2019, 131, 11922–11926.

[54]

Wang, K. W.; She, X. L.; Chen, S.; Liu, H. L.; Li, D. H.; Wang, Y.; Zhang, H. W.; Yang, D. J.; Yao, X. D. Boosting hydrogen evolution via optimized hydrogen adsorption at the interface of CoP3 and Ni2P. J. Mater. Chem. A 2018, 6, 5560–5565.

[55]

Han, W. F.; Li, X. L.; Liu, B.; Li, L. C.; Tang, H. D.; Li, Y.; Lu, C. S.; Li, X. N. Microwave assisted combustion of phytic acid for the preparation of Ni2P@C as a robust catalyst for hydrodechlorination. Chem. Commun. 2019, 55, 9279–9282.

[56]

Li, D.; Li, Z. Y.; Zou, R.; Shi, G.; Huang, Y. M.; Yang, W.; Yang, W.; Liu, C. F.; Peng, X. W. Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density. Appl. Catal. B: Environ. 2022, 307, 121170.

[57]

Li, Y.; Pan, Y.; Zhang, J. In-situ grown of Ni2P nanoparticles on 2D black phosphorus as a novel hybrid catalyst for hydrogen evolution. Int. J. Hydrog. Energy 2017, 42, 7951–7956.

[58]

Zhang, R.; Wang, G. D.; Wei, Z. H.; Teng, X.; Wang, J. J.; Miao, J. J.; Wang, Y. H.; Yang, F. X.; Zhu, X. W.; Chen, C. F. et al. A Fe–Ni5P4/Fe–Ni2P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. J. Mater. Chem. A 2021, 9, 1221–1229.

[59]

Liang, Y. H.; Liu, Q.; Asiri, A. M.; Sun, X. P.; Luo, Y. L. Self-supported FeP nanorod arrays: A cost–effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal. 2014, 4, 4065–4069.

[60]

Liu, Y.; Zhen, W. Y.; Wang, Y. H.; Liu, J. H.; Jin, L. H.; Zhang, T. Q.; Zhang, S. T.; Zhao, Y.; Song, S. Y.; Li, C. Y. et al. One-dimensional Fe2P acts as a Fenton agent in response to NIR II light and ultrasound for deep tumor synergetic theranostics. Angew. Chem. 2019, 131, 2429–2434.

[61]

Lyu, M.; Zhu, D. M.; Kong, X. Y.; Yang, Y.; Ding, S. J.; Zhou, Y. F.; Quan, H.; Duo, Y. H.; Bao, Z. R. Glutathione-depleting nanoenzyme and glucose oxidase combination for hypoxia modulation and radiotherapy enhancement. Adv. Healthc. Mater. 2020, 9, 1901819.

[62]

Shi, X. L.; An, P. F.; Zhang, Q.; Song, Q.; Jiang, D. L.; Tian, D.; Li, D. Synergy of nitrogen vacancies and Fe2P cocatalyst on graphitic carbon nitride for boosting photocatalytic CO2 conversion. Chem. Eng. J. 2022, 446, 137096.

[63]

Drouet, S.; Creus, J.; Collière, V.; Amiens, C.; García-Antón, J.; Sala, X.; Philippot, K. A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions. Chem. Commun. 2017, 53, 11713–11716.

[64]

Zhao, Z. F.; Wu, Z. J.; Zhou, L. X.; Zhang, M. H.; Li, W.; Tao, K. Y. Synthesis of a nano-nickel catalyst modified by ruthenium for hydrogenation and hydrodechlorination. Catal. Commun. 2008, 9, 2191–2194.

[65]

Su, L.; Cui, X. Z.; He, T.; Zeng, L. M.; Tian, H.; Song, Y. L.; Qi, K.; Xia, B. Y. Surface reconstruction of cobalt phosphide nanosheets by electrochemical activation for enhanced hydrogen evolution in alkaline solution. Chem. Sci. 2019, 10, 2019–2024.

Nano Research
Pages 2428-2435
Cite this article:
Wang Y, Chen Z, Li Q, et al. Porous needle-like Fe-Ni-P doped with Ru as efficient electrocatalyst for hydrogen generation powered by sustainable energies. Nano Research, 2023, 16(2): 2428-2435. https://doi.org/10.1007/s12274-022-4980-4
Topics:

1120

Views

10

Crossref

9

Web of Science

9

Scopus

1

CSCD

Altmetrics

Received: 15 June 2022
Revised: 30 July 2022
Accepted: 28 August 2022
Published: 27 September 2022
© Tsinghua University Press 2022
Return