AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Challenges and advances on low-temperature rechargeable lithium-sulfur batteries

Yu Jiao1( )Fan Wang4Yuhong Ma2Sangang Luo3Yaoyao Li2Anjun Hu2Miao He2Fei Li2Dongjiang Chen2Wei Chen2Tianyu Lei2Yin Hu2,4( )
College of Science, Xichang University, Xichang 615000, China
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
Show Author Information

Graphical Abstract

Challenges and advances of Li-S batteries working at low temperature are summarized and discussed, with suggestions for future development.

Abstract

Lithium-sulfur (Li-S) batteries have demonstrated the potential to conquer the energy storage related market due to the extremely high energy density. However, their performances at low temperature are still needed to be improved to broaden their applications. Therefore, in this review, the basic failure mechanisms and major challenges of Li-S battery at low temperature are categorized as the high desolvation barrier of Li+, uncontrolled nucleation and deposition of lithium, polysulfides clustering, and passivation of cathode by film like Li2S. Targeting these major issues, strategies, and advances concerning the design of optimized electrolyte, composite cathode and functional separator are highlighted and discussed. Finally, the suggestions are proposed for the future development of practical Li-S battery working at low temperature scenarios, hoping to accelerate the commercialization process and bring revolution to the energy storage market.

References

[1]

Zhao, Y. F.; Guo, J. C. Development of flexible Li-ion batteries for flexible electronics. InfoMat 2020, 2, 866–878.

[2]

Zhang, S. S. Design aspects of electrolytes for fast charge of Li-ion batteries. InfoMat 2020, 3, 125–130.

[3]

Zhang, S. S. Identifying rate limitation and a guide to design of fast-charging Li-ion battery. InfoMat 2020, 2, 942–949.

[4]

Yang, K.; Chen, L. K.; Ma, J. B.; He, Y. B.; Kang, F. Y. Progress and perspective of Li1+xAlxTi2−x(PO4)3 ceramic electrolyte in lithium batteries. InfoMat 2021, 3, 1195–1217.

[5]

Hu, A. J.; Zhou, M. J.; Lei, T. Y.; Hu, Y.; Du, X. C.; Gong, C. H.; Shu, C. Z.; Long, J. P.; Zhu, J.; Chen, W. et al. Optimizing redox reactions in aprotic lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2002180.

[6]

Chen, Y.; Wang, T. Y.; Tian, H. J.; Su, D. W.; Zhang, Q.; Wang, G. X. Advances in lithium-sulfur batteries: From academic research to commercial viability. Adv. Mater. 2021, 33, 2003666.

[7]

Wei, Z. H.; Ren, Y. Q.; Sokolowski, J.; Zhu, X. D.; Wu, G. Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries. InfoMat 2020, 2, 483–508.

[8]

Hu, Y.; Chen, W.; Lei, T. Y.; Jiao, Y.; Huang, J. W.; Hu, A. J.; Gong, C. H.; Yan, C. Y.; Wang, X. F.; Xiong, J. Strategies toward high-loading lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 2000082.

[9]

Zeng, Z. Q.; Liu, X. W.; Jiang, X. Y.; Liu, Z. J.; Peng, Z. Q.; Feng, X. M.; Chen, W. H.; Xia, D. G.; Ai, X. P.; Yang, H. X. et al. Enabling an intrinsically safe and high-energy-density 4.5 V-class Li-ion battery with nonflammable electrolyte. InfoMat 2020, 2, 984–992.

[10]

Rojaee, R.; Plunkett, S.; Rasul, M. G.; Cheng, M.; Jabbari, V.; Shahbazian-Yassar, R. Interfacial engineering of lithium-polymer batteries with in situ UV cross-linking. InfoMat 2021, 3, 1016–1027.

[11]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[12]

Li, Z.; Huang, Y. M.; Yuan, L. X.; Hao, Z. X.; Huang, Y. H. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon 2015, 92, 41–63.

[13]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[14]

Xiao, Z. B.; Yang, Z.; Li, Z. L.; Li, P. Y.; Wang, R. H. Synchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano 2019, 13, 3404–3412.

[15]

Zhang, M.; Chen, W.; Xue, L. X.; Jiao, Y.; Lei, T. Y.; Chu, J. W.; Huang, J. W.; Gong, C. H.; Yan, C. Y.; Yan, Y. C. et al. Adsorption-catalysis design in the lithium-sulfur battery. Adv. Energy Mater. 2020, 10, 1903008.

[16]

Zou, J.; Yuan, K. G.; Zhao, J.; Wang, B. J.; Chen, S. Y.; Huang, J. Y.; Li, H.; Niu, X. B.; Wang, L. P. Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeSx (1 ≤ x ≤ 1.14) cathodes. Energy Storage Mater. 2021, 43, 579–584.

[17]

Chen, D. L.; Song, M. M.; Zhu, M.; Zhu, T.; Kang, P. B.; Yang, X. P.; Sui, G. Highly elastic and polar block polymer binder enabling accommodation of volume change and confinement of polysulfide for high-performance lithium-sulfur batteries. ACS Appl. Energy Mater. 2022, 5, 5287–5295.

[18]

Li, B.; Li, S. M.; Liu, J. H.; Wang, B.; Yang, S. B. Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries. Nano Lett. 2015, 15, 3073–3079.

[19]

Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Meng, Y. S.; Shao-Horn, Y.; Gallant, B. M. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 2021, 6, 951–960.

[20]

Li, J. W.; Kong, Z.; Liu, X. X.; Zheng, B. C.; Fan, Q. H.; Garratt, E.; Schuelke, T.; Wang, K. L.; Xu, H.; Jin, H. Strategies to anode protection in lithium metal battery: A review. InfoMat 2021, 3, 1333–1363.

[21]

Han, Y. Y.; Liu, B.; Xiao, Z.; Zhang, W. K.; Wang, X. L.; Pan, G. X.; Xia, Y.; Xia, X. H.; Tu, J. P. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat 2021, 3, 155–174.

[22]

Chung, S. H.; Chang, C. H.; Manthiram, A. Hierarchical sulfur electrodes as a testing platform for understanding the high-loading capability of Li-S batteries. J. Power Sources 2016, 334, 179–190.

[23]

Qie, L.; Zu, C. X.; Manthiram, A. A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism. Adv. Energy Mater. 2016, 6, 1502459.

[24]

Dai, C. L.; Sun, G. Q.; Hu, L. Y.; Xiao, Y. K.; Zhang, Z. P.; Qu, L. T. Recent progress in graphene-based electrodes for flexible batteries. InfoMat 2020, 2, 509–526.

[25]

Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D.; Xia, L. X.; Mai, L. Q. A 3D nitrogen-doped graphene/tin nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.

[26]

Zhang, Y. S.; Zhang, P.; Zhang, S. J.; Wang, Z.; Li, N.; Silva, S. R. P.; Shao, G. S. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries. InfoMat 2021, 3, 790–803.

[27]

Tong, B.; Song, Z. Y.; Wan, H. H.; Feng, W. F.; Armand, M.; Liu, J. C.; Zhang, H.; Zhou, Z. B. Sulfur-containing compounds as electrolyte additives for lithium-ion batteries. InfoMat 2021, 3, 1364–1392.

[28]

Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.

[29]

Yao, Y. X.; Zhang, X. Q.; Li, B. Q.; Yan, C.; Chen, P. Y.; Huang, J. Q.; Zhang, Q. A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat 2020, 2, 379–388.

[30]

Sun, K.; Peng, Z. Q. Intermetallic interphases in lithium metal and lithium ion batteries. InfoMat 2021, 3, 1083–1109.

[31]

Chen, D. J.; Liu, Y. P.; Xia, C.; Han, Y. P.; Sun, Q. W.; Wang, X. C.; Chen, W.; Jian, X.; Lv, W. Q.; Ma, J. Y. et al. Polybenzimidazole functionalized electrolyte with Li-wetting and self-fluorination functionalities for practical Li metal batteries. InfoMat 2022, 4, e12247.

[32]

Yang, G.; Tan, J.; Jin, H.; Kim, Y. H.; Yang, X. Y.; Son, D. H.; Ahn, S.; Zhou, H. C.; Yu, C. Creating effective nanoreactors on carbon nanotubes with mechanochemical treatments for high-areal-capacity sulfur cathodes and lithium anodes. Adv. Funct. Mater. 2018, 28, 1800595.

[33]

Zhao, Y. M.; Yue, F. S.; Li, S. C.; Zhang, Y.; Tian, Z. R.; Xu, Q.; Xin, S.; Guo, Y. G. Advances of polymer binders for silicon-based anodes in high energy density lithium-ion batteries. InfoMat 2021, 3, 460–501.

[34]

Chen, X. F.; Guan, Z. Q.; Chu, F. L.; Xue, Z. C.; Wu, F. X.; Yu, Y. Air-stable inorganic solid-state electrolytes for high energy density lithium batteries: Challenges, strategies, and prospects. InfoMat 2022, 4, e12248.

[35]

Ma, C.; Cui, W. F.; Liu, X. Z.; Ding, Y.; Wang, Y. G. In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives. InfoMat 2022, 4, e12232.

[36]

Wu, Y. J.; Wang, S.; Li, H.; Chen, L. Q.; Wu, F. Progress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat 2021, 3, 827–853.

[37]

Peng, L. L.; Wei, Z. Y.; Wan, C. Z.; Li, J.; Chen, Z.; Zhu, D.; Baumann, D.; Liu, H. T.; Allen, C. S.; Xu, X. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770.

[38]

Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.

[39]

Feng, Y.; Zhou, L. M.; Ma, H.; Wu, Z. H.; Zhao, Q.; Li, H. X.; Zhang, K.; Chen, J. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 2022, 15, 1711–1759.

[40]

Wei, C. L.; Zhang, Y. C.; Tian, Y.; Tan, L. W.; An, Y. L.; Qian, Y.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Mater. 2021, 38, 157–189.

[41]

Luo, D.; Li, M.; Zheng, Y.; Ma, Q. Y.; Gao, R.; Zhang, Z.; Dou, H. Z.; Wen, G. B.; Shui, L. L.; Yu, A. P. et al. Electrolyte design for lithium metal anode-Based batteries toward extreme temperature application. Adv. Sci. 2021, 8, 2101051.

[42]

Hatzell, K. B. Make ion-solvent interactions weaker. Nat. Energy 2021, 6, 223–224.

[43]

Xu, K.; Von Cresce, A.; Lee, U. Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir 2010, 26, 11538–11543.

[44]

Holoubek, J.; Liu, H. D.; Wu, Z. H.; Yin, Y. J.; Xing, X.; Cai, G. R.; Yu, S. C.; Zhou, H. Y.; Pascal, T. A.; Chen, Z. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 2021, 6, 303–313.

[45]

Thenuwara, A. C.; Shetty, P. P.; McDowell, M. T. Distinct Nanoscale interphases and morphology of lithium metal electrodes operating at low temperatures. Nano Lett. 2019, 19, 8664–8672.

[46]

Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 2016, 9, 3221–3229.

[47]

Zhang, Y. W.; Luo, J. M.; Wang, C. L.; Hu, X. F.; Matios, E.; Li, W. Y. Electrolyte additive enabled low temperature lithium metal batteries. Mater. Chem. Front. 2022, 6, 1405–1413.

[48]

Aurbach, D.; Youngman, O.; Gofer, Y.; Meitav, A. The electrochemical behaviour of 1,3-dioxolane-LiClO4 solutions-I. Uncontaminated solutions. Electrochim. Acta 1990, 35, 625–638.

[49]

Peled, E.; Menkin, S. Review-SEI: Past, present and future. J. Electrochem. Soc. 2017, 164, A1703–A1719.

[50]

Aurbach, D.; Weissman, I.; Schechter, A.; Cohen, H. X-ray photoelectron spectroscopy studies of lithium surfaces prepared in several important electrolyte solutions. A comparison with previous studies by Fourier transform infrared spectroscopy. Langmuir 1996, 12, 3991–4007.

[51]

Gupta, A.; Bhargav, A.; Jones, J. P.; Bugga, R. V.; Manthiram, A. Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium-sulfur batteries. Chem. Mater. 2020, 32, 2070–2077.

[52]

Lang, S. Y.; Xiao, R. J.; Gu, L.; Guo, Y. G.; Wen, R.; Wan, L. J. Interfacial mechanism in lithium-sulfur batteries: How salts mediate the structure evolution and dynamics. J. Am. Chem. Soc. 2018, 140, 8147–8155.

[53]

Hu, Y.; Hu, A. J.; Wang, J. W.; Niu, X. B.; Zhou, M. J.; Chen, W.; Lei, T. Y.; Huang, J. W.; Li, Y. Y.; Xue, L. X. et al. Strong intermolecular polarization to boost polysulfide conversion kinetics for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 9771–9779.

[54]

Wang, Y. Z.; Huang, X. X.; Zhang, S. Q.; Hou, Y. L. Sulfur hosts against the shuttle effect. Small Methods 2018, 2, 1700345.

[55]

Mikhaylik, Y. V.; Akridge, J. R. Low temperature performance of Li/S batteries. J. Electrochem. Soc. 2003, 150, A306–A311.

[56]

Song, Y. Z.; Cai, W. L.; Kong, L.; Cai, J. S.; Zhang, Q.; Sun, J. Y. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects. Adv. Energy Mater. 2019, 10, 1901075.

[57]

Yu, S. H.; Huang, X.; Schwarz, K.; Huang, R.; Arias, T. A.; Brock, J. D.; Abruña, H. D. Direct visualization of sulfur cathodes: New insights into Li-S batteries via operando X-ray based methods. Energy Environ. Sci. 2018, 11, 202–210.

[58]

Chu, H.; Noh, H.; Kim, Y. J.; Yuk, S.; Lee, J. H.; Lee, J.; Kwack, H.; Kim, Y.; Yang, D. K.; Kim, H. T. Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions. Nat. Commun. 2019, 10, 188.

[59]

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

[60]

Gerber, L. C. H.; Frischmann, P. D.; Fan, F. Y.; Doris, S. E.; Qu, X. H.; Scheuermann, A. M.; Persson, K.; Chiang, Y. M.; Helms, B. A. Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator. Nano Lett. 2016, 16, 549–554.

[61]

Li, Q. Y.; Lu, D. P.; Zheng, J. M.; Jiao, S. H.; Luo, L. L.; Wang, C. M.; Xu, K.; Zhang, J. G.; Xu, W. Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Appl. Mater. Interfaces 2017, 9, 42761–42768.

[62]

Holoubek, J.; Kim, K.; Yin, Y. J.; Wu, Z. H.; Liu, H. D.; Li, M. Q.; Chen, A.; Gao, H. P.; Cai, G. R.; Pascal, T. A. et al. Electrolyte design implications of ion-pairing in low-temperature Li metal batteries. Energy Environ. Sci. 2022, 15, 1647–1658.

[63]

Tan, S.; Liu, H. D.; Wu, Z. H.; Weiland, C.; Seong-Min, B.; Ronne, A.; Liu, P.; Whittingham, M. S.; Shadike, Z.; Hu, E. Y. et al. Isoxazole-based electrolytes for lithium metal protection and lithium-sulfurized polyacrylonitrile (SPAN) battery operating at low temperature. J. Electrochem. Soc. 2022, 169, 030513.

[64]

Zheng, X. Y.; Huang, L. Q.; Luo, W.; Wang, H. T.; Dai, Y. M.; Liu, X. Y.; Wang, Z. Q.; Zheng, H. H.; Huang, Y. H. Tailoring electrolyte solvation chemistry toward an inorganic-rich solid-electrolyte interphase at a Li metal anode. ACS Energy Lett. 2021, 6, 2054–2063.

[65]

Jiang, Z. P.; Zeng, Z. Q.; Liang, X. M.; Yang, L.; Hu, W.; Zhang, C.; Han, Z. L.; Feng, J. W.; Xie, J. Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2005991.

[66]

Zhang, D.; Zhu, D. W.; Guo, W. Y.; Deng, C. W.; Xu, Q. J.; Li, H. X.; Min, Y. L. The fluorine-rich electrolyte as an interface modifier to stabilize lithium metal battery at ultra-low temperature. Adv. Funct. Mater. 2022, 32, 2112764.

[67]

Xiao, P. T.; Zhao, Y.; Piao, Z. H.; Li, B. H.; Zhou, G. M.; Cheng, H. M. A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li||NCM811 cells with a wide temperature range of 100 °C. Energy Environ. Sci. 2022, 15, 2435–2444.

[68]

Wang, Z. X.; Sun, Z. H.; Shi, Y.; Qi, F. L.; Gao, X. N.; Yang, H. C.; Cheng, H. M.; Li, F. Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature li batteries. Adv. Energy Mater. 2021, 11, 2100935.

[69]

Cai, G. R.; Holoubek, J.; Xia, D. W.; Li, M. Q.; Yin, Y. J.; Xing, X.; Liu, P.; Chen, Z. An ester electrolyte for lithium-sulfur batteries capable of ultra-low temperature cycling. Chem. Commun. 2020, 56, 9114–9117.

[70]

Holoubek, J.; Yu, M. Y.; Yu, S. C.; Li, M. Q.; Wu, Z. H.; Xia, D. W.; Bhaladhare, P.; Gonzalez, M. S.; Pascal, T. A.; Liu, P. et al. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Lett. 2020, 5, 1438–1447.

[71]

Zhang, S. S.; Xu, K.; Jow, T. R. An improved electrolyte for the LiFePO4 cathode working in a wide temperature range. J. Power Sources 2006, 159, 702–707.

[72]

Ren, X. D.; Zhang, X. H.; Shadike, Z.; Zou, L. F.; Jia, H.; Cao, X.; Engelhard, M. H.; Matthews, B. E.; Wang, C. M.; Arey, B. W. et al. Designing advanced in situ electrode/electrolyte interphases for wide temperature operation of 4.5 V Li||LiCoO2 batteries. Adv Mater. 2020, 32, 2004898.

[73]

Lin, S. S.; Hua, H. M.; Lai, P. B.; Zhao, J. B. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 2021, 11, 2101775.

[74]

Thenuwara, A. C.; Shetty, P. P.; Kondekar, N.; Sandoval, S. E.; Cavallaro, K.; May, R.; Yang, C. T.; Marbella, L. E.; Qi, Y.; McDowell, M. T. Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase. ACS Energy Lett. 2020, 5, 2411–2420.

[75]

Xiao, P. T.; Luo, R. P.; Piao, Z. H.; Li, C.; Wang, J. X.; Yu, K.; Zhou, G. M.; Cheng, H. M. High-performance lithium metal batteries with a wide operating temperature range in carbonate electrolyte by manipulating interfacial chemistry. ACS Energy Lett. 2021, 6, 3170–3179.

[76]

Piao, Z. H.; Xiao, P. T.; Luo, R. P.; Ma, J. B.; Gao, R. H.; Li, C.; Tan, J. Y.; Yu, K.; Zhou, G. M.; Cheng, H. M. Constructing a stable interface layer by tailoring solvation chemistry in carbonate electrolytes for high-performance lithium-metal batteries. Adv. Mater. 2022, 34, 2108400.

[77]

Wu, J. Y.; Li, X. W.; Rao, Z. X.; Xu, X. N.; Cheng, Z. X.; Liao, Y. Q.; Yuan, L. X.; Xie, X. L.; Li, Z.; Huang, Y. H. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 2020, 72, 104725.

[78]

Liu, K. X.; Wang, Z. Y.; Shi, L. Y.; Jungsuttiwong, S.; Yuan, S. Ionic liquids for high performance lithium metal batteries. J. Energy Chem. 2021, 59, 320–333.

[79]

Wang, Z. C.; Zhang, H. Y.; Xu, J. J.; Pan, A. R.; Zhang, F. R.; Wang, L.; Han, R.; Hu, J. C.; Liu, M. N.; Wu, X. D. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries. Adv. Funct. Mater. 2022, 32, 2112598.

[80]

Tang, J. Q.; Zhai, B. B.; Liu, J. F.; Ren, W. H.; Han, Y.; Yang, H.; Chen, Y. S.; Zhao, C.; Fang, Y. A robust, freeze-resistant and highly ion conductive ionogel electrolyte towards lithium metal batteries workable at −30 °C. Phys. Chem. Chem. Phys. 2021, 23, 6775–6782.

[81]

Yao, M.; Yu, T. H.; Ruan, Q. Q.; Chen, Q. J.; Zhang, H. T.; Zhang, S. J. High-voltage and wide-temperature lithium metal batteries enabled by ultrathin MOF-derived solid polymer electrolytes with modulated ion transport. ACS Appl. Mater. Interfaces 2021, 13, 47163–47173.

[82]

Yuan, L. X.; Feng, J. K.; Ai, X. P.; Cao, Y. L.; Chen, S. L.; Yang, H. X. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte. Electrochem. Commun. 2006, 8, 610–614.

[83]

Park, J. W.; Yamauchi, K.; Takashima, E.; Tachikawa, N.; Ueno, K.; Dokko, K.; Watanabe, M. Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium-sulfur batteries. J. Phys. Chem. C 2013, 117, 4431–4440.

[84]

Hu, T. Y.; Wang, Y. L.; Huo, F.; He, H. Y.; Zhang, S. J. Understanding structural and transport properties of dissolved Li2S8 in ionic liquid electrolytes through molecular dynamics simulations. ChemPhysChem 2021, 22, 419–429.

[85]

Zhu, S. Y.; Wang, Y. Q.; Jiang, J. C.; Yan, X.; Sun, D. Y.; Jin, Y. C.; Nan, C. W.; Munakata, H.; Kanamura, K. Good low-temperature properties of nitrogen-enriched porous carbon as sulfur hosts for high-performance Li-S batteries. ACS Appl. Mater. Interfaces 2016, 8, 17253–17259.

[86]

Deng, D. R.; Xue, F.; Bai, C. D.; Lei, J.; Yuan, R. M.; Zheng, M. S.; Dong, Q. F. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range. ACS Nano 2018, 12, 11120–11129.

[87]

Zhang, Z. Q.; Wang, Y. Q.; Liu, J.; Sun, D. Y.; Ma, X. D.; Jin, Y. C.; Cui, Y. J. A multifunctional graphene oxide-Zn(II)-triazole complex for improved performance of lithium-sulfur battery at low temperature. Electrochim. Acta 2018, 271, 58–66.

[88]

Wang, Y. Q.; Xu, Y.; Ma, S. X.; Duan, R. M.; Zhao, Y. F.; Zhang, Y. F.; Liu, Z. H.; Li, C. Low temperature performance enhancement of high-safety lithium-sulfur battery enabled by synergetic adsorption and catalysis. Electrochim. Acta 2020, 353, 136470.

[89]

Zheng, S. S.; Sun, Y.; Xue, H. G.; Braunstein, P.; Huang, W.; Pang, H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Natl. Sci. Rev. 2022, 9, nwab197.

[90]

Wang, X. L.; Zhang, G. X.; Yin, W.; Zheng, S. S.; Kong, Q. Q.; Tian, J. Q.; Pang, H. Metal-organic framework-derived phosphide nanomaterials for electrochemical applications. Carbon Energy 2022, 4, 246–281.

[91]

Li, S. L.; Xu, Q. Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci. 2013, 6, 1656–1683.

[92]

Geng, P. B.; Wang, L.; Du, M.; Bai, Y.; Li, W. T.; Liu, Y. F.; Chen, S. Q.; Braunstein, P.; Xu, Q.; Pang, H. MIL-96-Al for Li-S batteries: Shape or size? Adv. Mater. 2022, 34, 2107836.

[93]

Li, W. T.; Guo, X. T.; Geng, P. B.; Du, M.; Jing, Q. L.; Chen, X. D.; Zhang, G. X.; Li, H. P.; Xu, Q.; Braunstein, P. et al. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv. Mater. 2021, 33, 2105163.

[94]

Burns, D. A.; Baumann, A. E.; Bennett, K. J.; Díaz, J. C.; Thoi, V. S. Chemical sulfide tethering improves low-temperature Li-S battery cycling. ACS Appl. Mater. Interfaces 2021, 13, 50862–50868.

[95]

Gao, N.; Zhang, Y. J.; Chen, C.; Li, B.; Li, W. B.; Lu, H. Q.; Yu, L.; Zheng, S. M.; Wang, B. Low-temperature Li-S battery enabled by CoFe bimetallic catalysts. J. Mater. Chem. A 2022, 10, 8378–8389.

[96]

Wang, Z. K.; Shen, X. W.; Li, S. J.; Wu, Y. X.; Yang, T. Z.; Liu, J.; Qian, T.; Yan, C. L. Low-temperature Li-S batteries enabled by all amorphous conversion process of organosulfur cathode. J. Energy Chem. 2022, 64, 496–502.

[97]

Zeng, P.; Liu, C.; Cheng, C.; Yuan, C.; Dai, K. H.; Mao, J.; Zheng, L. R.; Zhang, J.; Chang, L. Y.; Haw, S. C. et al. Propelling polysulfide redox conversion by d-band modulation for high sulfur loading and low temperature lithium-sulfur batteries. J. Mater. Chem. A 2021, 9, 18526–18536.

[98]

Fan, C. Y.; Zheng, Y. P.; Zhang, X. H.; Shi, Y. H.; Liu, S. Y.; Wang, H. C.; Wu, X. L.; Sun, H. Z.; Zhang, J. P. High-performance and low-temperature lithium-sulfur batteries: Synergism of thermodynamic and kinetic regulation. Adv. Energy Mater. 2018, 8, 1703638.

[99]

Yu, Z.; Wang, B. L.; Liao, X. B.; Zhao, K. N.; Yang, Z. F.; Xia, F. J.; Sun, C. L.; Wang, Z.; Fan, C. Y.; Zhang, J. P. et al. Boosting polysulfide redox kinetics by graphene-supported Ni nanoparticles with carbon coating. Adv. Energy Mater. 2020, 10, 2000907.

[100]

Chen, X. S.; Gao, Y.; Zhu, G. R.; Chen, H. J.; Chen, S. C.; Wang, X. L.; Wu, G.; Wang, Y. Z. Multifunctional interlayer with simultaneously capturing and catalytically converting polysulfides for boosting safety and performance of lithium-sulfur batteries at high-low temperatures. J. Energy Chem. 2020, 50, 248–259.

[101]

Ma, C.; Feng, Y. M.; Liu, X. J.; Yang, Y.; Zhou, L. J.; Chen, L. B.; Yan, C. L.; Wei, W. F. Dual-engineered separator for highly robust, all-climate lithium-sulfur batteries. Energy Storage Mater. 2020, 32, 46–54.

[102]

Li, J.; Cai, Y. J.; Cui, Y. Y.; Wu, H.; Da, H. R.; Yang, Y. J.; Zhang, H. T.; Zhang, S. J. Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for −20–70 °C lithium metal battery. Nano Energy 2022, 95, 107027.

Nano Research
Pages 8082-8096
Cite this article:
Jiao Y, Wang F, Ma Y, et al. Challenges and advances on low-temperature rechargeable lithium-sulfur batteries. Nano Research, 2023, 16(6): 8082-8096. https://doi.org/10.1007/s12274-022-4983-1
Topics:
Part of a topical collection:

1293

Views

9

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 21 July 2022
Revised: 25 August 2022
Accepted: 29 August 2022
Published: 21 September 2022
© Tsinghua University Press 2022
Return