Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
As an important neurotransmitter, the detection of dopamine (DA) is of great significance for the diagnosis and treatment of neurological diseases. In this study, WO3-SnO2 nanoflake arrays were synthesized on fluorine-doped tin oxide (FTO) by hydrothermal synthesis and pulse electrodeposition, revealing significant surface-enhanced Raman scattering (SERS) activity with an enhancement factor (EF) reaching 4.79 × 107. The obvious EF was mainly ascribed to the charge transfer between WO3-SnO2 and methylene blue (MB) based on chemical mechanism (CM) and the molecular resonance effect. With the competitive adsorption of DA and absorbed MB, we prepared a SERS and electrochemical (EC) dual-mode detection platform of DA based on the WO3-SnO2 nanoflake arrays. The linear range (LR) was 5.00–1.75 × 103 nmol/L, and the detection limits (LODs) were as low as 1.50 and 0.80 nmol/L by SERS and EC respectively. Besides, the developed detection platform can shield the interference of many neurotransmitters similar to DA, showing good selectivity and excellent stability. In general, the SERS-EC dual-mode detection platform can be well applied to the detection of DA in cell lysate, demonstrating great potential in diagnosis of neurodegenerative diseases.
Banerjee, S.; McCracken, S.; Hossain, M. F.; Slaughter, G. Electrochemical detection of neurotransmitters. Biosensors 2020, 10, 101.
Lakard, S.; Pavel, I. A.; Lakard, B. Electrochemical biosensing of dopamine neurotransmitter: A review. Biosensors 2021, 11, 179.
Lan, Y. X.; Yuan, F.; Fereja, T. H.; Wang, C.; Lou, B. H.; Li, J. P.; Xu, G. B. Chemiluminescence of lucigenin/riboflavin and its application for selective and sensitive dopamine detection. Anal. Chem. 2019, 91, 2135–2139.
Zhou, L.; Dong, H.; Yan, F.; Guo, W. L.; Su, B. Electrochemical detection of Alzheimer’s disease related substances in biofluids by silica nanochannel membrane modified glassy carbon electrodes. Analyst 2018, 143, 4756–4763.
Yusoff, N.; Pandikumar, A.; Ramaraj, R.; Lim, H. N.; Huang, N. M. Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim. Acta 2015, 182, 2091–2114.
Feng, J. J.; Zhao, Y. M.; Wang, H. Y. Colorimetric detection of dopamine based on silver nanoparticles. Chem. J. Chin. Univ. 2015, 36, 1269–1274.
Nishan, U.; Sabba, U.; Rahim, A.; Asad, M.; Shah, M.; Iqbal, A.; Iqbal, J.; Muhammad, N. Ionic liquid tuned titanium dioxide nanostructures as an efficient colorimetric sensing platform for dopamine detection. Mater. Chem. Phys. 2021, 262, 124289.
Lin, Y. H.; Chen, C. E.; Wang, C. Y.; Pu, F.; Ren, J. S.; Qu, X. G. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chem. Commun. 2011, 47, 1181–1183.
Suzuki, Y. Development of fluorescent reagent based on ligand exchange reaction for the highly sensitive and selective detection of dopamine in the serum. Sensors 2019, 19, 3928.
Kulchat, S.; Boonta, W.; Todee, A.; Sianglam, P.; Ngeontae, W. A fluorescent sensor based on thioglycolic acid capped cadmium sulfide quantum dots for the determination of dopamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 7–15.
Shen, C. F.; Zhang, Z. F.; Guo, Y. A.; Yan, G. Q. Research on development of dopamine fluorescence detection method based on CdSe/ZnS quantum dots. J. Instrum. Anal. 2016, 35, 949–954.
Saraji, M.; Shahvar, A. Selective micro solid-phase extraction of epinephrine, norepinephrine and dopamine from human urine and plasma using aminophenylboronic acid covalently immobilized on magnetic nanoparticles followed by high-performance liquid chromatography-fluorescence detection. Anal. Methods 2016, 8, 830–839.
Rajper, A. D.; Arain, G. M.; Rind, F. M. A.; Khuhawar, M. Y. Spectrophotometric and liquid chromatographic determination of dopamine from pharmaceutical preparations using 2-hydroxynaphthaldehyde as derivatizing reagent. Asian J. Chem. 2007, 19, 4817–4824.
Eddin, F. B. K.; Fen, Y. W. Recent advances in electrochemical and optical sensing of dopamine. Sensors 2020, 20, 1039.
Scaffidi, J. P.; Gregas, M. K.; Lauly, B.; Carter, J. C.; Angel, S. M.; Vo-Dinh, T. Trace molecular detection via surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering at a distance of 15 meters. Appl. Spectrosc. 2010, 64, 485–492.
Figueiredo, M. L. B.; Martin, C. S.; Furini, L. N.; Rubira, R. J. G.; Batagin-Neto, A.; Alessio, P.; Constantino, C. J. L. Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species. Appl. Surf. Sci. 2020, 522, 146466.
Zhu, W.; Feng, X. Q.; Liu, Z. D.; Zhao, M. H.; He, P.; Yang, S. W.; Tang, S. W.; Chen, D.; Guo, Q. L.; Wang, G. et al. Sensitive, reusable, surface-enhanced Raman scattering sensors constructed with a 3D graphene/Si hybrid. ACS Appl. Mater. Interfaces 2021, 13, 23081–23091.
Zhou, Y.; Gu, Q. Y.; Qiu, T. Z.; He, X.; Chen, J. Q.; Qi, R. J.; Huang, R.; Zheng, T. T.; Tian, Y. Ultrasensitive sensing of volatile organic compounds using a Cu-doped SnO2–NiO p–n heterostructure that shows significant Raman enhancement. Angew. Chem., Int. Ed. 2021, 60, 26260–26267.
Li, Z. F.; Wu, Z. H.; He, R. A.; Wan, L.; Zhang, S. Y. In2O3−x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance. J. Mater. Sci. Technol. 2020, 56, 151–161.
He, C. P.; Jing, P. P.; Wang, P. F.; Ji, J. M.; Ouyang, T.; Cui, Y. F.; Pu, Y. P. A novel hierarchical BaTiO3/AgI heterojunction with boosting spatial charge kinetics for photocatalytic degradation of organic pollutant. Ceram. Int. 2021, 47, 33426–33434.
Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.
Lin, S.; Hasi, W.; Han, S.; Lin, X.; Wang, L. A dual-functional PDMS-assisted paper-based SERS platform for the reliable detection of thiram residue both on fruit surfaces and in juice. Anal. Methods 2020, 12, 2571–2579.
Zhou, H.; Zhang, J. S.; Li, B. X.; Liu, J.; Xu, J. J.; Chen, H. Y. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold-mediated strand displacement amplification reaction. Anal. Chem. 2021, 93, 6120–6127.
Gu, X. F.; Wang, K. Y.; Qiu, J. W.; Wang, Y. J.; Tian, S.; He, Z. K.; Zong, R.; Kraatz, H. B. Enhanced electrochemical and SERS signals by self-assembled gold microelectrode arrays: A dual readout platform for multiplex immumoassay of tumor biomarkers. Sensors Actuat. B: Chem. 2021, 334, 129674.
Zhang, J. H.; Tu, J. P.; Zhou, D.; Tang, H.; Li, L.; Wang, X. L.; Gu, C. D. Hierarchical SnO2@NiO core/shell nanoflake arrays as energy-saving electrochromic materials. J. Mater. Chem. C 2014, 2, 10409–10417.
Cai, G. F.; Zhou, D.; Xiong, Q. Q.; Zhang, J. H.; Wang, X. L.; Gu, C. D.; Tu, J. P. Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays. Sol. Energy Mater. Sol. Cells 2013, 117, 231–238.
Zhou, J. W.; Wang, W. Y.; Yu, P.; Xiong, E. H.; Zhang, X. H.; Chen, J. H. A simple label-free electrochemical aptasensor for dopamine detection. RSC Adv. 2014, 4, 52250–52255.
Munawar, T.; Mukhtar, F.; Nadeem, M. S.; Manzoor, S.; Ashiq, M. N.; Mahmood, K.; Batool, S.; Hasan, M.; Iqbal, F. Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. J. Alloys Compd. 2022, 898, 162779.
Nivetha, M. R. S.; Kumar, J. V.; Ajarem, J. S.; Allam, A. A.; Manikandan, V.; Arulmozhi, R.; Abirami, N. Construction of SnO2/g-C3N4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent. Environ. Res. 2022, 209, 112809.
Kato, K.; Shirai, T. Highly efficient water purification by WO3-based homo/heterojunction photocatalyst under visible light. J. Alloys Compd. 2022, 901, 163434.
Kumar, S.; Sharma, M.; Aljawfi, R. N.; Chae, K. H.; Kumar, R.; Dalela, S.; Alshoaibi, A.; Ahmed, F.; Alvi, P. A. Tailoring the structural, electronic structure and optical properties of Fe:SnO2 nanoparticles. J. Electron. Spectrosc. Relat. Phenom. 2020, 240, 146934.
Liu, X. Y.; Zhou, Y.; Zheng, T. T.; Tian, Y. Surface-enhanced Raman scattering technology based on WO3 film for detection of VEGF. Chem. Res. Chin. Univ. 2021, 37, 900–905.
Morrish, R.; Haak, T.; Wolden, C. A. Low-temperature synthesis of n-type WS2 thin films via H2S plasma sulfurization of WO3. Chem. Mater. 2014, 26, 3986–3992.
Baranauskas, V.; Fontana, M.; Guo, Z. J.; Ceragioli, H. J.; Peterlevitz, A. C. Field-emission properties of nanocrystalline tin oxide films. Sensors Actuat. B: Chem. 2005, 107, 474–478.
Xiao, G. N.; Man, S. Q. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem. Phys. Lett. 2007, 447, 305–309.
Al-Mustafa, J. I. FTIR investigation of the conformational properties of the cyanide bound horse metmyoglobin. Vib. Spectrosc. 2003, 31, 89–99.
Tao, Y.; Lin, Y. H.; Ren, J. S.; Qu, X. G. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 2013, 42, 41–46.
Lai, C. C. J.; Chen, C. H.; Ko, F. H. In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler. J. Chromatogr. A 2004, 1023, 143–150.
He, E. H.; Xu, S. W.; Dai, Y. C.; Wang, Y. D.; Xiao, G. H.; Xie, J. Y.; Xu, S. H.; Fan, P. H.; Mo, F.; Wang, M. X. et al. SWCNTs/PEDOT: PSS-modified microelectrode arrays for dual-mode detection of electrophysiological signals and dopamine concentration in the striatum under isoflurane anesthesia. ACS Sens. 2021, 6, 3377–3386.
Saxer, C.; Niina, M.; Nakashima, A.; Nagae, Y.; Masuda, N. Simultaneous determination of levodopa and 3-O-methyldopa in human plasma by liquid chromatography with electrochemical detection. J. Chromatogr. B 2004, 802, 299–305.