AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

SERS and EC dual-mode detection for dopamine based on WO3-SnO2 nanoflake arrays

Linya Lu1,§Yan Zhou2,§Tingting Zheng1( )Yang Tian1,2( )
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China

§ Linya Lu and Yan Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

A surface-enhanced Raman scattering (SERS) and electrochemical (EC) dual-mode detection platform was prepared to detect dopamine sensitively based on the WO3-SnO2 nanoflake arrays

Abstract

As an important neurotransmitter, the detection of dopamine (DA) is of great significance for the diagnosis and treatment of neurological diseases. In this study, WO3-SnO2 nanoflake arrays were synthesized on fluorine-doped tin oxide (FTO) by hydrothermal synthesis and pulse electrodeposition, revealing significant surface-enhanced Raman scattering (SERS) activity with an enhancement factor (EF) reaching 4.79 × 107. The obvious EF was mainly ascribed to the charge transfer between WO3-SnO2 and methylene blue (MB) based on chemical mechanism (CM) and the molecular resonance effect. With the competitive adsorption of DA and absorbed MB, we prepared a SERS and electrochemical (EC) dual-mode detection platform of DA based on the WO3-SnO2 nanoflake arrays. The linear range (LR) was 5.00–1.75 × 103 nmol/L, and the detection limits (LODs) were as low as 1.50 and 0.80 nmol/L by SERS and EC respectively. Besides, the developed detection platform can shield the interference of many neurotransmitters similar to DA, showing good selectivity and excellent stability. In general, the SERS-EC dual-mode detection platform can be well applied to the detection of DA in cell lysate, demonstrating great potential in diagnosis of neurodegenerative diseases.

Electronic Supplementary Material

Download File(s)
12274_2022_4984_MOESM1_ESM.pdf (2 MB)

References

[1]

Banerjee, S.; McCracken, S.; Hossain, M. F.; Slaughter, G. Electrochemical detection of neurotransmitters. Biosensors 2020, 10, 101.

[2]

Lakard, S.; Pavel, I. A.; Lakard, B. Electrochemical biosensing of dopamine neurotransmitter: A review. Biosensors 2021, 11, 179.

[3]

Lan, Y. X.; Yuan, F.; Fereja, T. H.; Wang, C.; Lou, B. H.; Li, J. P.; Xu, G. B. Chemiluminescence of lucigenin/riboflavin and its application for selective and sensitive dopamine detection. Anal. Chem. 2019, 91, 2135–2139.

[4]

Zhou, L.; Dong, H.; Yan, F.; Guo, W. L.; Su, B. Electrochemical detection of Alzheimer’s disease related substances in biofluids by silica nanochannel membrane modified glassy carbon electrodes. Analyst 2018, 143, 4756–4763.

[5]

Yusoff, N.; Pandikumar, A.; Ramaraj, R.; Lim, H. N.; Huang, N. M. Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim. Acta 2015, 182, 2091–2114.

[6]

Feng, J. J.; Zhao, Y. M.; Wang, H. Y. Colorimetric detection of dopamine based on silver nanoparticles. Chem. J. Chin. Univ. 2015, 36, 1269–1274.

[7]

Nishan, U.; Sabba, U.; Rahim, A.; Asad, M.; Shah, M.; Iqbal, A.; Iqbal, J.; Muhammad, N. Ionic liquid tuned titanium dioxide nanostructures as an efficient colorimetric sensing platform for dopamine detection. Mater. Chem. Phys. 2021, 262, 124289.

[8]

Lin, Y. H.; Chen, C. E.; Wang, C. Y.; Pu, F.; Ren, J. S.; Qu, X. G. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chem. Commun. 2011, 47, 1181–1183.

[9]

Suzuki, Y. Development of fluorescent reagent based on ligand exchange reaction for the highly sensitive and selective detection of dopamine in the serum. Sensors 2019, 19, 3928.

[10]

Kulchat, S.; Boonta, W.; Todee, A.; Sianglam, P.; Ngeontae, W. A fluorescent sensor based on thioglycolic acid capped cadmium sulfide quantum dots for the determination of dopamine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 196, 7–15.

[11]

Shen, C. F.; Zhang, Z. F.; Guo, Y. A.; Yan, G. Q. Research on development of dopamine fluorescence detection method based on CdSe/ZnS quantum dots. J. Instrum. Anal. 2016, 35, 949–954.

[12]

Saraji, M.; Shahvar, A. Selective micro solid-phase extraction of epinephrine, norepinephrine and dopamine from human urine and plasma using aminophenylboronic acid covalently immobilized on magnetic nanoparticles followed by high-performance liquid chromatography-fluorescence detection. Anal. Methods 2016, 8, 830–839.

[13]

Rajper, A. D.; Arain, G. M.; Rind, F. M. A.; Khuhawar, M. Y. Spectrophotometric and liquid chromatographic determination of dopamine from pharmaceutical preparations using 2-hydroxynaphthaldehyde as derivatizing reagent. Asian J. Chem. 2007, 19, 4817–4824.

[14]

Eddin, F. B. K.; Fen, Y. W. Recent advances in electrochemical and optical sensing of dopamine. Sensors 2020, 20, 1039.

[15]

Scaffidi, J. P.; Gregas, M. K.; Lauly, B.; Carter, J. C.; Angel, S. M.; Vo-Dinh, T. Trace molecular detection via surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering at a distance of 15 meters. Appl. Spectrosc. 2010, 64, 485–492.

[16]

Figueiredo, M. L. B.; Martin, C. S.; Furini, L. N.; Rubira, R. J. G.; Batagin-Neto, A.; Alessio, P.; Constantino, C. J. L. Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species. Appl. Surf. Sci. 2020, 522, 146466.

[17]

Zhu, W.; Feng, X. Q.; Liu, Z. D.; Zhao, M. H.; He, P.; Yang, S. W.; Tang, S. W.; Chen, D.; Guo, Q. L.; Wang, G. et al. Sensitive, reusable, surface-enhanced Raman scattering sensors constructed with a 3D graphene/Si hybrid. ACS Appl. Mater. Interfaces 2021, 13, 23081–23091.

[18]

Zhou, Y.; Gu, Q. Y.; Qiu, T. Z.; He, X.; Chen, J. Q.; Qi, R. J.; Huang, R.; Zheng, T. T.; Tian, Y. Ultrasensitive sensing of volatile organic compounds using a Cu-doped SnO2–NiO p–n heterostructure that shows significant Raman enhancement. Angew. Chem., Int. Ed. 2021, 60, 26260–26267.

[19]

Li, Z. F.; Wu, Z. H.; He, R. A.; Wan, L.; Zhang, S. Y. In2O3−x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance. J. Mater. Sci. Technol. 2020, 56, 151–161.

[20]

He, C. P.; Jing, P. P.; Wang, P. F.; Ji, J. M.; Ouyang, T.; Cui, Y. F.; Pu, Y. P. A novel hierarchical BaTiO3/AgI heterojunction with boosting spatial charge kinetics for photocatalytic degradation of organic pollutant. Ceram. Int. 2021, 47, 33426–33434.

[21]

Dong, F.; Zhao, Z. W.; Xiong, T.; Ni, Z. L.; Zhang, W. D.; Sun, Y. J.; Ho, W. K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater. Interfaces 2013, 5, 11392–11401.

[22]

Lin, S.; Hasi, W.; Han, S.; Lin, X.; Wang, L. A dual-functional PDMS-assisted paper-based SERS platform for the reliable detection of thiram residue both on fruit surfaces and in juice. Anal. Methods 2020, 12, 2571–2579.

[23]

Zhou, H.; Zhang, J. S.; Li, B. X.; Liu, J.; Xu, J. J.; Chen, H. Y. Dual-mode SERS and electrochemical detection of miRNA based on popcorn-like gold nanofilms and toehold-mediated strand displacement amplification reaction. Anal. Chem. 2021, 93, 6120–6127.

[24]

Gu, X. F.; Wang, K. Y.; Qiu, J. W.; Wang, Y. J.; Tian, S.; He, Z. K.; Zong, R.; Kraatz, H. B. Enhanced electrochemical and SERS signals by self-assembled gold microelectrode arrays: A dual readout platform for multiplex immumoassay of tumor biomarkers. Sensors Actuat. B: Chem. 2021, 334, 129674.

[25]

Zhang, J. H.; Tu, J. P.; Zhou, D.; Tang, H.; Li, L.; Wang, X. L.; Gu, C. D. Hierarchical SnO2@NiO core/shell nanoflake arrays as energy-saving electrochromic materials. J. Mater. Chem. C 2014, 2, 10409–10417.

[26]

Cai, G. F.; Zhou, D.; Xiong, Q. Q.; Zhang, J. H.; Wang, X. L.; Gu, C. D.; Tu, J. P. Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays. Sol. Energy Mater. Sol. Cells 2013, 117, 231–238.

[27]

Zhou, J. W.; Wang, W. Y.; Yu, P.; Xiong, E. H.; Zhang, X. H.; Chen, J. H. A simple label-free electrochemical aptasensor for dopamine detection. RSC Adv. 2014, 4, 52250–52255.

[28]

Munawar, T.; Mukhtar, F.; Nadeem, M. S.; Manzoor, S.; Ashiq, M. N.; Mahmood, K.; Batool, S.; Hasan, M.; Iqbal, F. Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. J. Alloys Compd. 2022, 898, 162779.

[29]

Nivetha, M. R. S.; Kumar, J. V.; Ajarem, J. S.; Allam, A. A.; Manikandan, V.; Arulmozhi, R.; Abirami, N. Construction of SnO2/g-C3N4 an effective nanocomposite for photocatalytic degradation of amoxicillin and pharmaceutical effluent. Environ. Res. 2022, 209, 112809.

[30]

Kato, K.; Shirai, T. Highly efficient water purification by WO3-based homo/heterojunction photocatalyst under visible light. J. Alloys Compd. 2022, 901, 163434.

[31]

Kumar, S.; Sharma, M.; Aljawfi, R. N.; Chae, K. H.; Kumar, R.; Dalela, S.; Alshoaibi, A.; Ahmed, F.; Alvi, P. A. Tailoring the structural, electronic structure and optical properties of Fe:SnO2 nanoparticles. J. Electron. Spectrosc. Relat. Phenom. 2020, 240, 146934.

[32]

Liu, X. Y.; Zhou, Y.; Zheng, T. T.; Tian, Y. Surface-enhanced Raman scattering technology based on WO3 film for detection of VEGF. Chem. Res. Chin. Univ. 2021, 37, 900–905.

[33]

Morrish, R.; Haak, T.; Wolden, C. A. Low-temperature synthesis of n-type WS2 thin films via H2S plasma sulfurization of WO3. Chem. Mater. 2014, 26, 3986–3992.

[34]

Baranauskas, V.; Fontana, M.; Guo, Z. J.; Ceragioli, H. J.; Peterlevitz, A. C. Field-emission properties of nanocrystalline tin oxide films. Sensors Actuat. B: Chem. 2005, 107, 474–478.

[35]

Xiao, G. N.; Man, S. Q. Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem. Phys. Lett. 2007, 447, 305–309.

[36]

Al-Mustafa, J. I. FTIR investigation of the conformational properties of the cyanide bound horse metmyoglobin. Vib. Spectrosc. 2003, 31, 89–99.

[37]

Tao, Y.; Lin, Y. H.; Ren, J. S.; Qu, X. G. A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Au nanoclusters. Biosens. Bioelectron. 2013, 42, 41–46.

[38]

Lai, C. C. J.; Chen, C. H.; Ko, F. H. In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler. J. Chromatogr. A 2004, 1023, 143–150.

[39]

He, E. H.; Xu, S. W.; Dai, Y. C.; Wang, Y. D.; Xiao, G. H.; Xie, J. Y.; Xu, S. H.; Fan, P. H.; Mo, F.; Wang, M. X. et al. SWCNTs/PEDOT: PSS-modified microelectrode arrays for dual-mode detection of electrophysiological signals and dopamine concentration in the striatum under isoflurane anesthesia. ACS Sens. 2021, 6, 3377–3386.

[40]

Saxer, C.; Niina, M.; Nakashima, A.; Nagae, Y.; Masuda, N. Simultaneous determination of levodopa and 3-O-methyldopa in human plasma by liquid chromatography with electrochemical detection. J. Chromatogr. B 2004, 802, 299–305.

Nano Research
Pages 4049-4054
Cite this article:
Lu L, Zhou Y, Zheng T, et al. SERS and EC dual-mode detection for dopamine based on WO3-SnO2 nanoflake arrays. Nano Research, 2023, 16(3): 4049-4054. https://doi.org/10.1007/s12274-022-4984-0
Topics:
Part of a topical collection:

918

Views

22

Crossref

22

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 27 April 2022
Revised: 29 July 2022
Accepted: 26 August 2022
Published: 27 September 2022
© Tsinghua University Press 2022
Return