AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

NaF-rich protective layer on PTFE coating microcrystalline graphite for highly stable Na metal anodes

Yangyang Xie1,2,§Congyin Liu1,§Jingqiang Zheng1Huangxu Li3Liuyun Zhang1Zhian Zhang1( )
School of Metallurgy and Environment, Engineering Research Center of the Ministry of Education for Advanced Battery Materials, Hunan Provincial Key Laboratory of Nonferrous Value-Added Metallurgy, Central South University, Changsha 410083, China
Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
Department of Chemistry City University of Hong Kong Kowloon, Hong Kong, China

§ Yangyang Xie and Congyin Liu contributed equally to this work.

Show Author Information

Graphical Abstract

The isotropous microcrystalline graphite (MG) with a controllable protective layer by coating poly(tetrafluoroethylene) (PTFE) can be used as Na metal anode host. When plating on Cu foil, due to the absence of effective nucleation sites and protective layer, Na+ flux nonuniform transmission leads to heterogeneous deposition and causes dendrite or dead Na generation. As for MG electrode, owing to the isotropy of MG, Na+ can form co-intercalation to induce Na uniform nucleation and deposition in random direction. But during the long cycling period, for the lack of effective protective layer, the nonuniform deposition can still exist. In contrast, the PTFE coating MG (P@MG) can not only uniform Na nucleation and deposition but also inhibit Na dendrite growth with the PTFE protective later. Thus, P@MG can retain the uniform deposition after many cycles and gain an ultra-stable cycling performance.

Abstract

The practical application of Na metal anode is plagued by the dendrite growth, unstable solid electrolyte interphase (SEI) formation and volume change during the cycling process. Herein, poly(tetrafluoroethylene) (noted as PTFE) coating microcrystalline graphite is designed as the sodium metal anode host by a facile and cost-effective strategy. The isotropous microcrystalline graphite (MG) is conducive to guiding Na+ to form a co-intercalation structure into MG. And the PTFE coating layer can form NaF as artificial SEI film for uniform ion transport and deposition. As a result, the gained PTFE coating MG electrode can deliver a long-life span over 1,200 cycles with an average Coulombic efficiency (CE) of 99.88%. To note, almost the CE in each cycle is around 99.8%–100%. When assembled with Na3V2(PO4)2F3 cathode as full cells, the full cell paired with PTFE coating MG electrode can operate much stable than that of MG electrode for the existence of PTFE coating layer. Even utilized as sodium-free Na metal anode paired with Na3V2(PO4)2F3 cathode, it can also deliver a high initial CE of 76.27% at 0.5 C. After 100 cycles, it still has a high discharge capacity of 83.5 mAh·g−1.

Electronic Supplementary Material

Download File(s)
12274_2022_4985_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Xiang, X. D.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343–5364.

[2]

Li, H. X.; Xu, M.; Zhang, Z. A.; Lai, Y. Q.; Ma, J. M. Engineering of polyanion type cathode materials for sodium-ion batteries: Toward higher energy/power density. Adv. Funct. Mater. 2020, 30, 2000473.

[3]

Sun, B.; Xiong, P.; Maitra, U.; Langsdorf, D.; Yan, K.; Wang, C. Y.; Janek, J.; Schröder, D.; Wang, G. X. Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries. Adv. Mater. 2020, 32, 1903891.

[4]

Cao, R. G.; Mishra, K.; Li, X. L.; Qian, J. F.; Engelhard, M. H.; Bowden, M. E.; Han, K. S.; Mueller, K. T.; Henderson, W. A.; Zhang, J. G. Enabling room temperature sodium metal batteries. Nano Energy 2016, 30, 825–830.

[5]

Seh, Z. W.; Sun, J.; Sun, Y. M.; Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 2015, 1, 449–455.

[6]

Lee, B.; Paek, E.; Mitlin, D.; Lee S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.

[7]

Shi, H. D.; Yue, M.; Zhang, C. J.; Dong, Y. F.; Lu, P. F.; Zheng, S. H.; Huang, H. J.; Chen, J.; Wen, P. C.; Xu, Z. C. et al. 3D flexible, conductive, and recyclable Ti3C2TX MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 2020, 14, 8678–8688.

[8]

Lee, K.; Lee, Y. J.; Lee, M. J.; Han, J.; Lim, J.; Ryu, K.; Yoon, H.; Kim, B. H.; Kim, B. J.; Lee, S. W. A 3D hierarchical host with enhanced sodiophilicity enabling anode-free sodium-metal batteries. Adv. Mater. 2022, 34, 2109767.

[9]

Li, Z. P.; Zhu, K. J.; Liu, P.; Jiao, L. F. 3D confinement strategy for dendrite-free sodium metal batteries. Adv. Energy Mater. 2022, 12, 2100359.

[10]

Jiang, H. Y.; Lin, X. H.; Wei, C. L.; Zhang, Y. C.; Feng, J. K.; Tian, X. L. Sodiophilic Mg2+-decorated Ti3C2 MXene for dendrite-free sodium metal batteries with carbonate-based electrolytes. Small 2022, 18, 2107637.

[11]

Xiao, J.; Xiao, N.; Li, K.; Zhang, L. P.; Ma, X. Q.; Li, Y.; Leng, C. Y.; Qiu, J. S. Sodium metal anodes with self-correction function based on fluorine-superdoped CNTs/cellulose nanofibrils composite paper. Adv. Funct. Mater. 2022, 32, 2111133.

[12]

Wang, H.; Matios, E.; Wang, C. L.; Luo, J. M.; Lu, X.; Hu, X. F.; Zhang, Y. W.; Li, W. Y. Tin nanoparticles embedded in a carbon buffer layer as preferential nucleation sites for stable sodium metal anodes. J. Mater. Chem. A 2019, 7, 23747–23755.

[13]

Wang, C. L.; Wang, H.; Matios, E.; Hu, X. F.; Li, W. Y. A chemically engineered porous copper matrix with cylindrical core–shell skeleton as a stable host for metallic sodium anodes. Adv. Funct. Mater. 2018, 28, 1802282.

[14]

Wang, Z. H.; Zhang, X. L.; Zhou, S. Y.; Edström, K.; Strømme, M.; Nyholm, L. Lightweight, thin, and flexible silver nanopaper electrodes for high-capacity dendrite-free sodium metal anodes. Adv. Funct. Mater. 2018, 28, 1804038.

[15]

Kim, H.; Hong, J.; Yoon, G.; Kim, H.; Park, K. Y.; Park, K. Y.; Park, M. S.; Yoon, W. S.; Kang, K. Sodium intercalation chemistry in graphite. Energy Environ. Sci. 2015, 8, 2963–2969.

[16]

Zhang, X.; Hao, F.; Cao, Y. J.; Xie, Y. H.; Yuan, S. Y.; Dong, X. L.; Xia, Y. Y. Dendrite-free and long-cycling sodium metal batteries enabled by sodium-ether cointercalated graphite anode. Adv. Funct. Mater. 2021, 31, 2009778.

[17]

Ruiz-Martínez, D.; Kovacs, A.; Gómez, R. Development of novel inorganic electrolytes for room temperature rechargeable sodium metal batteries. Energy Environ. Sci. 2017, 10, 1936–1941.

[18]

Luo, W.; Lin, C. F.; Zhao, O.; Noked, M.; Zhang, Y.; Rubloff, G. W.; Hu, L. B. Ultrathin surface coating enables the stable sodium metal anode. Adv. Energy Mater. 2017, 7, 1601526.

[19]

Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 2017, 29, 1703729.

[20]

Qin, J. Q.; Shi, H. D.; Huang, K.; Lu, P. F.; Wen, P. C.; Xing, F. F.; Yang, B.; Ye, M.; Yu, Y.; Wu, Z. S. Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nat. Commun. 2021, 12, 5786.

[21]

Huang, Z. Y.; Li, Z.; Zhu, M.; Wang, G. Y.; Yu, F. F.; Wu, M. H.; Xu, G.; Dou, S. X.; Liu, H. K.; Wu, C. Highly stable lithium/sodium metal batteries with high utilization enabled by a holey two-dimensional N-doped TiNb2O7 host. Nano Lett. 2021, 21, 10453–10461.

[22]

Xu, Z. X.; Yang, J.; Zhang, T.; Sun, L. M.; Nuli, Y. N.; Wang, J. L.; Hirano, S. I. Stable Na metal anode enabled by a reinforced multistructural SEI layer. Adv. Funct. Mater. 2019, 29, 1901924.

[23]

Zhao, Y.; Liang, J. W.; Sun, Q.; Goncharova, L. V.; Wang, J. W.; Wang, C. H.; Adair, K. R.; Li, X. N.; Zhao, F. P.; Sun, Y. P. et al. In situ formation of highly controllable and stable Na3PS4 as a protective layer for Na metal anode. J. Mater. Chem. A 2019, 7, 4119–4125.

[24]

Zhang, S. J.; You, J. H.; He, Z. W.; Zhong, J. J.; Zhang, P. F.; Yin, Z. W.; Pan, F.; Ling, M.; Zhang, B. K.; Lin, Z. Scalable lithiophilic/sodiophilic porous buffer layer fabrication enables uniform nucleation and growth for lithium/sodium metal batteries. Adv. Funct. Mater. 2022, 32, 2200967.

[25]

Wang, H.; Wang, C. L.; Matios, E.; Li, W. Y. Critical role of ultrathin graphene films with tunable thickness in enabling highly stable sodium metal anodes. Nano Lett. 2017, 17, 6808–6815.

[26]

Li, P. R.; Xu, T. H.; Ding, P.; Deng, J.; Zha, C. Y.; Wu, Y. L.; Wang, Y. Y.; Li, Y. G. Highly reversible Na and K metal anodes enabled by carbon paper protection. Energy Storage Mater. 2018, 15, 8–13.

[27]

Gao, L. N.; Chen, J. E.; Chen, Q. L.; Kong, X. Q. The chemical evolution of solid electrolyte interface in sodium metal batteries. Sci. Adv. 2022, 8, eabm4606.

[28]

Zhao, Y.; Goncharova, L. V.; Zhang, Q.; Kaghazchi, P.; Sun, Q.; Lushington, A.; Wang, B. Q.; Li, R. Y.; Sun, X. L. Inorganic–organic coating via molecular layer deposition enables long life sodium metal anode. Nano Lett. 2017, 17, 5653–5659.

[29]

Zhao, Y.; Goncharova, L. V.; Lushington, A.; Sun, Q.; Yadegari, H.; Wang, B. Q.; Xiao, W.; Li, R. Y.; Sun, X. L. Superior stable and long life sodium metal anodes achieved by atomic layer deposition. Adv. Mater. 2017, 29, 1606663.

[30]

Wang, S. Y.; Jie, Y. L.; Sun, Z. H.; Cai, W. B.; Chen, Y. W.; Huang, F. Y.; Liu, Y.; Li, X. P.; Du, R. Q.; Cao, R. G. et al. An implantable artificial protective layer enables stable sodium metal anodes. ACS Appl. Energy Mater. 2020, 3, 8688–8694.

[31]

Li, Z.; Tian, Z. L.; Zhang, C. Z.; Wang, F.; Ye, C.; Han, F.; Tan, J.; Liu, J. S. An AlCl3 coordinating interlayer spacing in microcrystalline graphite facilitates ultra-stable and high-performance sodium storage. Nanoscale 2021, 13, 10468–10477.

[32]

Kang, S. X.; Lun, H.; Qi, Y. X.; Bai, X.; Li, X. R.; Yang, H.; An, J.; Kong, L. Y.; Bai, Y. J. Boosted electrochemical performance of graphite anode enabled by polytetrafluoroethylene-derived F-doping. Mater. Chem. Phys. 2021, 261, 124214.

[33]

Xie, Y. Y.; Hu, J. X.; Han, Z. X.; Wang, T. S.; Zheng, J. Q.; Gan, L.; Lai, Y. Q.; Zhang, Z. A. Encapsulating sodium deposition into carbon rhombic dodecahedron guided by sodiophilic sites for dendrite-free Na metal batteries. Energy Storage Mater. 2020, 30, 1–8.

[34]

Li, K. K.; Zhang, J.; Lin, D. M.; Wang, D. W.; Li, B. H.; Lv, W.; Sun, S.; He, Y. B.; Kang, F. Y.; Yang, Q. H. et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 725.

[35]

Liu, X. Y.; Zheng, X. Y.; Dai, Y. M.; Wu, W. Y.; Huang, Y. Y.; Fu, H. Y.; Huang, Y. H.; Luo, W. Fluoride-rich solid-electrolyte-interface enabling stable sodium metal batteries in high-safe electrolytes. Adv. Funct. Mater. 2021, 31, 2103522.

[36]

Xu, M. Y.; Li, Y.; Ihsan-Ul-Haq, M.; Mubarak, N.; Liu, Z. J.; Wu, J. X.; Luo, Z. T.; Kim, J. K. NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Storage Mater. 2022, 44, 477–486.

[37]

Xie, Y. Y.; Hu, J. X.; Zhang, L. Y.; Wang, A. N.; Zheng, J. Q.; Li, H. X.; Lai, Y. Q.; Zhang, Z. A. Stabilizing Na metal anode with NaF interface on spent cathode carbon from aluminum electrolysis. Chem. Commun. 2021, 57, 7561–7564.

[38]

Hou, Z.; Wang, W. H.; Chen, Q. W.; Yu, Y. K.; Zhao, X. X.; Tang, M.; Zheng, Y. Y.; Quan, Z. W. Hybrid protective layer for stable sodium metal anodes at high utilization. ACS Appl. Mater. Interfaces 2019, 11, 37693–37700.

[39]

Wang, T. S.; Zhang, W.; Li, H. X.; Hu, J. X.; Lai, Y. Q.; Zhang, Z. A. N-doped carbon nanotubes decorated Na3V2(PO4)2F3 as a durable ultrahigh-rate cathode for sodium ion batteries. ACS Appl. Energy Mater. 2020, 3, 3845–3853.

Nano Research
Pages 2436-2444
Cite this article:
Xie Y, Liu C, Zheng J, et al. NaF-rich protective layer on PTFE coating microcrystalline graphite for highly stable Na metal anodes. Nano Research, 2023, 16(2): 2436-2444. https://doi.org/10.1007/s12274-022-4985-z
Topics:

995

Views

9

Crossref

10

Web of Science

10

Scopus

1

CSCD

Altmetrics

Received: 22 June 2022
Revised: 14 August 2022
Accepted: 30 August 2022
Published: 01 October 2022
© Tsinghua University Press 2022
Return