Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Evaporative/radiative electrospun membrane for personal cooling

Mohammad Irfan Iqbal1,§Shuo Shi2,§Gokula Manikandan Senthil Kumar3Jinlian Hu2()
Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong 999077, China
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China

§ Mohammad Irfan Iqbal and Shuo Shi contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Designed evaporative/radiative electrospun membranes concurrently offer excellent water vapor transmissivity and mid-infrared transmissivity compared to conventional cotton. This design fosters electrospinning technology for personal cooling garment fabrication.

Abstract

Functional textiles that promote daily comfort and productivity must efficiently release body sweats and transmit radiative heat through sweat evaporation and mid-infrared radiation (MIR) (8–13 µm). However, most of the traditional clothing cannot provide simultaneous sweat evaporation and mid-infrared radiation transmission efficiently, leading to a poor design of personal cooling wearables. Herein, an evaporative/radiative integrated functional fibrous electrospun membrane is meticulously designed and controllably fabricated via facile electrospinning technology for personal cooling management. The developed membrane can be applied as a smart wearable with distinct personal thermal management applications. The promising temperature and humidity responsive vapor transmission of the membrane grants 1.2 times of evaporative cooling than that of traditional cotton. Besides, based on its high mid-infrared radiation transmission (53%) property in the range of 8–13 µm, the as-spun membrane provides extra cooling of 1.5 °C than that of cotton. Moreover, the building energy saving performances demonstrated that 47.1% annual building cooling can be achieved using the developed electrospun membrane. In general, the evaporative/radiative electrospun membrane creates a passive cooling microclimate for the human body, meeting the growing demand of wearable for personal cooling.

Electronic Supplementary Material

Download File(s)
12274_2022_4987_MOESM1_ESM.pdf (1.2 MB)

References

[1]

Hu, S.; Yan, D.; Guo, S. Y.; Cui, Y.; Dong, B. A survey on energy consumption and energy usage behavior of households and residential building in urban China. Energy Build. 2017, 148, 366–378.

[2]

Yan, D.; Hong, T. Z.; Li, C.; Zhang, Q.; An, J. J.; Hu, S. A thorough assessment of China’s standard for energy consumption of buildings. Energy Build. 2017, 143, 114–128.

[3]

Kaplan, S.; Okur, A. Thermal comfort performance of sports garments with objective and subjective measurements. Indian J. Fibre Text. Res. 2012, 37, 46–54.

[4]
McLellan, T. M. The efficacy of an air-cooling vest to reduce thermal strain for light armour vehicle personnel. (Report No. DRDC-TORONTO-TR-2007-002). Defence R&D Canada, Toronto: Technical Report.
[5]

Duffield, R.; Dawson, B.; Bishop, D.; Fitzsimons, M.; Lawrence, S. Effect of wearing an ice cooling jacket on repeat sprint performance in warm/humid conditions. Br. J. Sports Med. 2003, 37, 164–169.

[6]

Iqbal, M. I.; Shuo, S.; Jiang, Y. Z.; Fei, B.; Xia, Q. Y.; Wang, X.; Hu, W. B.; Hu, J. L. Woolen respirators for thermal management. Adv. Mater. Technol. 2021, 6, 2100201.

[7]

Zhu, S. S.; Hu, J. L. Multi-modal contractive forces of wools as actuator. Polymers 2020, 12, 1464.

[8]

Hu, J. L.; Irfan Iqbal, M.; Sun, F. X. Wool can be cool: Water-actuating woolen knitwear for both hot and cold. Adv. Funct. Mater. 2020, 30, 2005033.

[9]
Hu, J. L. Adaptive and Functional Polymers, Textiles and Their Applications; Imperial College Press: London, 2011.
[10]

Han, Y. T.; Jiang, Y. Z.; Hu, J. L. Collagen incorporation into waterborne polyurethane improves breathability, mechanical property, and self-healing ability. Compos. A:Appl. Sci. Manuf. 2020, 133, 105854.

[11]

Suvachittanont, S.; Duangchan, A.; Metheenukul, T. Innovative production of PCMs (phase change materials) preparation by vacuum impregnation: Thermal and physical properties. J. Chem. Chem. Eng. 2013, 7, 1074–1086.

[12]

Shi, S.; Si, Y. F.; Han, Y. T.; Wu, T.; Iqbal, M. I.; Fei, B.; Li, R. K. Y.; Hu, J. L.; Qu, J. P. Recent progress in protective membranes fabricated via electrospinning: Advanced materials, biomimetic structures, and functional applications. Adv. Mater. 2022, 34, 2107938.

[13]

Liu, L.; Xu, W. H.; Ding, Y. C.; Agarwal, S.; Greiner, A.; Duan, G. G. A review of smart electrospun fibers toward textiles. Compos. Commun. 2020, 22, 100506.

[14]

Wang, X.; Liu, X. H.; Li, Z. Y.; Zhang, H. W.; Yang, Z. W.; Zhou, H.; Fan, T. X. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 2020, 30, 1907562.

[15]

Wu, J.; Wang, N.; Zhao, Y.; Jiang, L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A 2013, 1, 7290–7305.

[16]

Zander, N. E. Hierarchically structured electrospun fibers. Polymers 2013, 5, 19–44.

[17]

Lou, L.; Chen, K. K.; Fan, J. T. Advanced materials for personal thermal and moisture management of health care workers wearing PPE. Mater. Sci. Eng. R Rep. 2021, 146, 100639.

[18]

Pakdel, E.; Naebe, M.; Sun, L.; Wang, X. G. Advanced functional fibrous materials for enhanced thermoregulating performance. ACS Appl. Mater. Interfaces 2019, 11, 13039–13057.

[19]

Kim, H.; McSherry, S.; Brown, B.; Lenert, A. Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology. ACS Appl. Mater. Interfaces 2020, 12, 43553–43559.

[20]

Park, B. K.; Um, I. C.; Han, S. M.; Han, S. E. Electrospinning to surpass white natural silk in sunlight rejection for radiative cooling. Adv. Photonics Res. 2021, 2, 2100008.

[21]

Iqbal, M. I.; Lin, K. X.; Sun, F. X.; Chen, S. R.; Pan, A. Q.; Lee, H. H.; Kan, C. W.; Lin, C. S. K.; Tso, C. Y. Radiative cooling nanofabric for personal thermal management. ACS Appl. Mater. Interfaces 2022, 14, 23577–23587.

[22]

Lu, Y.; Xiao, X. D.; Fu, J.; Huan, C. M; Qi, S.; Zhan, Y. J.; Zhu, Y. Q.; Xu, G. Novel smart textile with phase change materials encapsulated core–sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 2019, 355, 532–539.

[23]

Cai, L. L.; Song, A. Y.; Li, W.; Hsu, P. C.; Lin, D. C.; Catrysse, P. B.; Liu, Y. Y.; Peng, Y. C.; Chen, J.; Wang, H. X. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 2018, 30, 1802152.

[24]

Hsu, P. C.; Song, A. Y.; Catrysse, P. B.; Liu, C.; Peng, Y. C.; Xie, J.; Fan, S. H.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023.

[25]

Song, Y. N.; Ma, R. J.; Xu, L.; Huang, H. D.; Yan, D. X.; Xu, J. Z.; Zhong, G. J.; Lei, J.; Li, Z. M. Wearable polyethylene/polyamide composite fabric for passive human body cooling. ACS Appl. Mater. Interfaces 2018, 10, 41637–41644.

[26]

Tong, J. K.; Huang, X. P.; Boriskina, S. V.; Loomis, J.; Xu, Y. F.; Chen, G. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2015, 2, 769–778.

[27]

Peng, Y. C.; Chen, J.; Song, A. Y.; Catrysse, P. B.; Hsu, P. C.; Cai, L. L.; Liu, B. F.; Zhu, Y. Y.; Zhou, G. M.; Wu, D. S. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112.

[28]

Cai, L. L.; Peng, Y. C.; Xu, J. W.; Zhou, C. Y.; Zhou, C. X.; Wu, P. L.; Lin, D. C.; Fan, S. H.; Cui, Y. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 2019, 3, 1478–1486.

[29]

Liu, R.; Wang, X. W.; Yu, J. R.; Wang, Y.; Zhu, J.; Hu, Z. M. A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling. Macromol. Mater. Eng. 2018, 303, 1700456.

[30]

Yan, W.; Dong, C. Q.; Xiang, Y. Z.; Jiang, S.; Leber, A.; Loke, G.; Xu, W. X.; Hou, C.; Zhou, S. F.; Chen, M. et al. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Mater. Today 2020, 35, 168–194.

[31]

Li, X.; Lin, J. Y.; Bian, F. G.; Zeng, Y. C. Improving waterproof/breathable performance of electrospun poly (vinylidene fluoride) fibrous membranes by thermos-pressing. J. Polym. Sci. B:Polym. Phys. 2018, 56, 36–45.

[32]

Song, Y. N.; Lei, M. Q.; Deng, L. F.; Lei, J.; Li, Z. M. Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl. Mater. Interfaces 2020, 2, 4379–4386.

[33]

Zhang, X. S.; Yang, W. F.; Shao, Z. W.; Li, Y. G.; Su, Y.; Zhang, Q. H.; Hou, C. Y.; Wang, H. Z. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 2022, 16, 2188–2197.

[34]

Shi, S.; Han, Y. T.; Hu, J. L. Robust waterproof and self-adaptive breathable membrane with heat retention property for intelligent protective cloth. Prog. Org. Coat. 2019, 137, 105303.

[35]

Jeong, H. M.; Ahn, B. K.; Kim, B. K. Temperature sensitive water vapour permeability and shape memory effect of polyurethane with crystalline reversible phase and hydrophilic segments. Polym. Int. 2000, 49, 1714–1721.

[36]
TRNSYS_18 TRNSYS-Official Website [Online]. The University of Wisconsin Madison USA, 2018. http://sel.me.wisc.edu/trnsys/features/features.html (accessed Aug 4, 2022).
[37]

Kumar, G. M. S.; Cao, S. L. Simulation-based techno-economic feasibility study on sector coupled net-zero/positive energy metro railway system in Hong Kong. Energy Convers. Manage. 2021, 248, 114786.

[38]

Saffari, M.; de Gracia, A.; Ushak, S.; Cabeza, L. F. Economic impact of integrating PCM as passive system in buildings using Fanger comfort model. Energy Build. 2016, 112, 159–172.

[39]
TESS Mathematical Reference of the standard types of the TRNSYS document package [Online]. USA, 2018. http://web.mit.edu/parmstr/Public/TRNSYS/04-MathematicalReference.pdf (accessed Aug 4, 2022).
[40]
EMSD. Performance-based building energy code [Online]. 2005. https://www.emsd.gov.hk/filemanager/en/content_724/pb-bec.pdf. (accessed Aug 4, 2022)
[41]
HKGBC. Hong Kong Green Office Guide [Online]. Hong Kong Green Building Council, 2016. https://www.hkgbc.org.hk/eng/engagement/guidebooks/green-office-guide/index.jsp (accessed Aug 4, 2022).
[42]
Meteotest_AG. Meteonorm software [Online]. 2020. https://meteonorm.com/en/ (accessed Aug 4, 2022).
[43]

Gilani, S. I. U. H.; Khan, M. H.; Ali, M. Revisiting Fanger’s thermal comfort model using mean blood pressure as a bio-marker: An experimental investigation. Appl. Therm. Eng. 2016, 109, 35–43.

[44]

Alahmer, A.; Omar, M.; Mayyas, A. R.; Qattawi, A. Analysis of vehicular cabins’ thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models. Build. Environ. 2012, 48, 146–163.

[45]

Krawczyk, N.; Kapjor, A.; Orman, Ł. J. Verification of the Fanger model in real conditions. MATEC Web Conf. 2020, 328, 01001.

[46]

Gilani, S. I. U. H.; Khan, M. H.; Pao, W. Thermal comfort analysis of PMV model prediction in air conditioned and naturally ventilated buildings. Energy Procedia 2015, 75, 1373–1379.

[47]

D’Amelia, R. P.; Gentile, S.; Nirode, W. F.; Huang, L. Quantitative analysis of copolymers and blends of polyvinyl acetate (PVAc) using Fourier transform infrared spectroscopy (FTIR) and elemental analysis (EA). World J. Chem. Educ. 2016, 4, 25–31.

[48]

Tartarini, F.; Schiavon, S.; Cheung, T.; Hoyt, T. CBE thermal comfort tool: Online tool for thermal comfort calculations and visualizations. Software X 2020, 12, 100563.

[49]
ASHRAE. ANSI/ASHRAE Standard 55-2004 Thermal environmental conditions for human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, USA, 2004. http://www.ditar.cl/archivos/Normas_ASHRAE/T0080ASHRAE-55-2004-ThermalEnviromCondiHO.pdf (accessed Aug 4, 2022)
[50]

Zhu, K. K.; Shi, S.; Cao, Y.; Lu, A.; Hu, J. L.; Zhang, L. N. Robust chitin films with good biocompatibility and breathable properties. Carbohydr. Polym. 2019, 212, 361–367.

[51]

Xiao, R. C.; Hou, C. Y.; Yang, W. F.; Su, Y.; Li, Y. G.; Zhang, Q. H.; Gao, P.; Wang, H. Z. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body. ACS Appl. Mater. Interfaces 2019, 11, 44673–44681.

[52]

Zhao, H. R.; Shi, S.; Ding, J. H.; Zhou, M.; Liu, P. L.; Geng, L. H.; Iqbal M. I.; Yu, H. B. Sequentially bridged graphene sheets for high-performance anticorrosion. Adv. Mater. Interfaces 2021, 8, 2100452.

[53]

Iqbal, M. I.; Sun, F. X.; Fei, B.; Xia, Q. Y.; Wang, X.; Hu, J. L. Knit architecture for water-actuating woolen knitwear and its personalized thermal management. ACS Appl. Mater. Interfaces 2021, 13, 6298–6308.

[54]

Hardy, J. D.; Soderstrom, G. F. Heat loss from the nude body and peripheral blood flow at temperatures of 22 °C to 35 °C. J. Nutr. 1938, 16, 493–510.

[55]

Su, X. W.; Wang, Z. J.; Zhou, F. Z.; Duanmu, L.; Zhai, Y. C.; Lian, Z. W.; Cao, B.; Zhang, Y. F.; Zhou, X.; Xie, J. C. Comfortable clothing model of occupants and thermal adaption to cold climates in China. Build. Environ. 2022, 207, 108499.

Nano Research
Pages 2563-2571
Cite this article:
Iqbal MI, Shi S, Senthil Kumar GM, et al. Evaporative/radiative electrospun membrane for personal cooling. Nano Research, 2023, 16(2): 2563-2571. https://doi.org/10.1007/s12274-022-4987-x
Topics:
Metrics & Citations  
Article History
Copyright
Return