Graphical Abstract

Organic electrochemical transistors (OECTs) have been hailed as highly sensitive biomolecular sensors among organic electronic devices due to their superior stability in an aqueous environment and high transconductance. At the same time, plasmon based sensors are known to provide high sensitivity for biosensing due to the highly localized plasmonic field. Here we report a plasmonic OECT (POET) device that synchronizes the advantages of OECTs and plasmonic sensors on a single platform. The platform is fabricated by a simple, cost-effective, and high-throughput nanoimprinting process, which allows plasmonic resonance peak tuning to a given visible wavelength of interest for versatile biosensing. With glucose sensing as proof, a five-times sensitivity enhancement is obtained for POET compared to a regular (non-plasmonic) OECT. Thus, the POET paves the way to a new paradigm of optoelectronic sensors that combines the inherent high sensitivity of OECTs and localized plasmonic field to sense a vast realm of biomolecules.
Mejía-Salazar, J. R.; Oliveira, Jr. O. N. Plasmonic biosensing. Chem. Rev. 2018, 118, 10617–10625.
Lin, M. H.; Wang, J. J.; Zhou, G. B.; Wang, J. B.; Wu, N.; Lu, J. X.; Gao, J. M.; Chen, X. Q.; Shi, J. Y.; Zuo, X. L. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. 2015, 127, 2179–2183.
Scognamiglio, V.; Arduini, F.; Palleschi, G.; Rea, G. Biosensing technology for sustainable food safety. TrAC Trends Anal. Chem. 2014, 62, 1–10.
Simon, D. T.; Gabrielsson, E. O.; Tybrandt, K.; Berggren, M. Organic bioelectronics: Bridging the signaling gap between biology and technology. Chem. Rev. 2016, 116, 13009–13041.
Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.
Bihar, E.; Deng, Y. X.; Miyake, T.; Saadaoui, M.; Malliaras, G. G.; Rolandi, M. A disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Sci. Rep. 2016, 6, 27582.
Xi, X.; Wu, D. Q.; Ji, W.; Zhang, S. N.; Tang, W.; Su, Y. Z.; Guo, X. J.; Liu, R. L. Manipulating the sensitivity and selectivity of OECT-based biosensors via the surface engineering of carbon cloth gate electrodes. Adv. Funct. Mater. 2020, 30, 1905361.
Yan, Y. J.; Wu, X. M.; Chen, Q. Z.; Liu, Y. Q.; Chen, H. P.; Guo, T. L. High-performance low-voltage flexible photodetector arrays based on all-solid-state organic electrochemical transistors for photosensing and imaging. ACS Appl. Mater. Interfaces 2019, 11, 20214–20224.
Paulsen, B. D.; Tybrandt, K.; Stavrinidou, E.; Rivnay, J. Organic mixed ionic-electronic conductors. Nat. Mater. 2020, 19, 13–26.
Liao, C. Z.; Zhang, M.; Niu, L. Y.; Zheng, Z. J.; Yan, F. Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J. Mater. Chem. B 2013, 1, 3820–3829.
Tao, W. Y.; Lin, P.; Hu, J.; Ke, S. M.; Song, J. J.; Zeng, X. R. A sensitive DNA sensor based on an organic electrochemical transistor using a peptide nucleic acid-modified nanoporous gold gate electrode. RSC Adv. 2017, 7, 52118–52124.
Parlak, O.; Keene, S. T.; Marais, A.; Curto, V. F.; Salleo, A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 2018, 4, eaar2904.
Lin, P.; Yan, F.; Yu, J. J.; Chan, H. L. W.; Yang, M. The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 2010, 22, 3655–3660.
Tang, H.; Yan, F.; Lin, P.; Xu, J. B.; Chan, H. L. W. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv. Funct. Mater. 2011, 21, 2264–2272.
Song, J. J.; Lin, P.; Ruan, Y. F.; Zhao, W. W.; Wei, W. W.; Hu, J.; Ke, S. M.; Zeng, X. R.; Xu, J. J.; Chen, H. Y. et al. Organic photo-electrochemical transistor-based biosensor: A proof-of-concept study toward highly sensitive DNA detection. Adv. Healthc. Mater. 2018, 7, 1800536.
Rivnay, J.; Leleux, P.; Ferro, M.; Sessolo, M.; Williamson, A.; Koutsouras, D. A.; Khodagholy, D.; Ramuz, M.; Strakosas, X.; Owens, R. M. et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 2015, 1, e1400251.
Liao, J. J.; Lin, S. W.; Yang, Y.; Liu, K.; Du, W. C. Highly selective and sensitive glucose sensors based on organic electrochemical transistors using TiO2 nanotube arrays-based gate electrodes. Sens. Actuators B:Chem. 2015, 208, 457–463.
Zhang, M.; Liao, C. Z.; Mak, C. H.; You, P.; Mak, C. L.; Yan, F. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 2015, 5, 8311.
Liao, J. J.; Lin, S. W.; Zeng, M.; Yang, Y. A miniature photoelectrochemical sensor based on organic electrochemical transistor for sensitive determination of chemical oxygen demand in wastewaters. Water Res. 2016, 94, 296–304.
Kang, Q.; Yang, L. X.; Chen, Y. F.; Luo, S. L.; Wen, L. F.; Cai, Q. Y.; Yao, S. Z. Photoelectrochemical detection of pentachlorophenol with a Multiple Hybrid CdSexTe1−x/TiO2 nanotube structure-based label-free immunosensor. Anal. Chem. 2010, 82, 9749–9754.
Ma, Z. Y.; Xu, F.; Qin, Y.; Zhao, W. W.; Xu, J. J.; Chen, H. Y. Invoking direct exciton−plasmon interactions by catalytic Ag deposition on Au nanoparticles: Photoelectrochemical bioanalysis with high efficiency. Anal. Chem. 2016, 88, 4183–4187.
Zhang, L.; Shi, X. M.; Xu, Y. T.; Fan, G. C.; Yu, X. D.; Liang, Y. Y.; Zhao, W. W. Binding-induced formation of DNAzyme on an Au@Ag nanoparticles/TiO2 nanorods electrode: Stimulating biocatalytic precipitation amplification for plasmonic photoelectrochemical bioanalysis. Biosens. Bioelectron. 2019, 134, 103–108.
Xu, L.; Ling, S. Y.; Li, H. N.; Yan, P. C.; Xia, J. X.; Qiu, J. X.; Wang, K.; Li, H. M.; Yuan, S. Q. Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites. Sens. Actuators B:Chem. 2017, 240, 308–314.
Zhao, W. W.; Tian, C. Y.; Xu, J. J.; Chen, H. Y. The coupling of localized surface plasmon resonance-based photoelectrochemistry and nanoparticle size effect: Towards novel plasmonic photoelectrochemical biosensing. Chem. Commun. 2012, 48, 895–897.
Tanne, J.; Schäfer, D.; Khalid, W.; Parak, W. J.; Lisdat, F. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots. Anal. Chem. 2011, 83, 7778–7785.
Bernards, D. A.; Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 2007, 17, 3538–3544.
Khodagholy, D.; Rivnay, J.; Sessolo, M.; Gurfinkel, M.; Leleux, P.; Jimison, L. H.; Stavrinidou, E.; Herve, T.; Sanaur, S.; Owens, R. M. et al. High transconductance organic electrochemical transistors. Nat. Commun. 2013, 4, 2133.
Khodagholy, D.; Doublet, T.; Quilichini, P.; Gurfinkel, M.; Leleux, P.; Ghestem, A.; Ismailova, E.; Hervé, T.; Sanaur, S.; Bernard, C. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 2013, 4, 1575.
Eltzov, E.; Prilutsky, D.; Kushmaro, A.; Marks, R. S.; Geddes, C. D. Metal-enhanced bioluminescence: An approach for monitoring biological luminescent processes. Appl. Phys. Lett. 2009, 94, 083901.
Aroca, R. F. Plasmon enhanced spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 5355–5363.
Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82–86.
Masson, J. F. Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sens. 2017, 2, 16–30.
Zhang, W. H.; Martin, O. J. F. A universal law for plasmon resonance shift in biosensing. ACS Photonics 2015, 2, 144–150.
Duong, B.; Khurshid, H.; Gangopadhyay, P.; Devkota, J.; Stojak, K.; Srikanth, H.; Tetard, L.; Norwood, R. A.; Peyghambarian, N.; Phan, M. H. et al. Enhanced magnetism in highly ordered magnetite nanoparticle-filled nanohole arrays. Small 2014, 10, 2840–2848.
Chantharasupawong, P.; Tetard, L.; Thomas, J. Coupling enhancement and giant rabi-splitting in large arrays of tunable plexcitonic substrates. J. Phys. Chem. C 2014, 118, 23954–23962.
Friedlein, J. T.; McLeod, R. R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 63, 398–414.
Bernards, D. A.; Macaya, D. J.; Nikolou, M.; DeFranco, J. A.; Takamatsu, S.; Malliaras, G. G. Enzymatic sensing with organic electrochemical transistors. J. Mater. Chem. 2008, 18, 116–120.
Fang, C. H.; Shao, L.; Zhao, Y. H.; Wang, J. F.; Wu, H. K. A gold nanocrystal/poly (dimethylsiloxane) composite for plasmonic heating on microfluidic chips. Adv. Mater. 2012, 24, 94–98.
Avanesian, T.; Christopher, P. Adsorbate specificity in hot electron driven photochemistry on catalytic metal surfaces. J. Phys. Chem. C 2014, 118, 28017–28031.
Xiao, M. D.; Jiang, R. B.; Wang, F.; Fang, C. H.; Wang, J. F.; Yu, J. C. Plasmon-enhanced chemical reactions. J. Mater. Chem. A 2013, 1, 5790–5805.
Wang, C. J.; Ranasingha, O.; Natesakhawat, S.; Ohodnicki, P. R. Jr.; Andio, M.; Lewis, J. P.; Matranga, C. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2. Nanoscale 2013, 5, 6968–6974.
Sarhan, R. M.; Koopman, W.; Schuetz, R.; Schmid, T.; Liebig, F.; Koetz, J.; Bargheer, M. The importance of plasmonic heating for the plasmon-driven photodimerization of 4-nitrothiophenol. Sci. Rep. 2019, 9, 3060.
Tang, H. B.; Chen, C. J.; Huang, Z. L.; Bright, J.; Meng, G. W.; Liu, R. S.; Wu, N. Q. Plasmonic hot electrons for sensing, photodetection, and solar energy applications: A perspective. J. Chem. Phys. 2020, 152, 220901.
Kim, M.; Lin, M. H.; Son, J.; Xu, H. X.; Nam, J. M. Hot-electron-mediated photochemical reactions: Principles, recent advances, and challenges. Adv. Opt. Mater. 2017, 5, 1700004.
Kumar, P. V.; Norris, D. J. Tailoring energy transfer from hot electrons to adsorbate vibrations for plasmon-enhanced catalysis. ACS Catal. 2017, 7, 8343–8350.
Gadzuk, J. W. Inelastic resonance scattering, tunneling, and desorption. Phys. Rev. B 1991, 44, 13466–13477.
Currano, L. J.; Sage, F. C.; Hagedon, M.; Hamilton, L.; Patrone, J.; Gerasopoulos, K. Wearable sensor system for detection of lactate in sweat. Sci. Rep. 2018, 8, 15890.
Lei, Y. L.; Wang, K.; Deng, L. F.; Chen, Y.; Nice, E. C.; Huang, C. H. Redox regulation of inflammation: Old elements, a new story. Med. Res. Rev. 2015, 35, 306–340.
Kazuma, E.; Sakai, N.; Tatsuma, T. Nanoimaging of localized plasmon-induced charge separation. Chem. Commun. 2011, 47, 5777–5779.