AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Photo-switchable Cu+ sites in metal-organic frameworks for adsorptive desulfurization

Yu-Yang Gu§Guoliang Liu§Shi-Chao QiChen GuTao YangXiao-Qin LiuLin-Bing Sun( )
State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

§ Yu-Yang Gu and Guoliang Liu contributed equally to this work.

Show Author Information

Graphical Abstract

A photo-switchable metal-organic framework (PMOF) decorated with Cu+ active sites was fabricated for the first time. Meaningfully, the transformation of photo-switchable units into PMOFs affects the interaction between adsorbate and adsorbent through shielding/exposing active sites, thus the controllable performance of adsorptive desulfurization is realized through light irradiations.

Abstract

Photo-switchable metal-organic frameworks (PMOFs) as energy-saving adsorbents for tailorable guest capture show admirable potentials for various applications like adsorptive desulfurization. However, the regulation behavior of most reported PMOFs is based on weak physical interaction, and it is highly desired to introduce specific active sites to satisfy the demand of higher adsorption capacity and selectivity. Herein, for the first time, we prepared the PMOFs, azobenzene-functionalized HKUST-1 (HK-Azo), simultaneously decorated with Cu2O active sites that possess strong interaction with guest molecules. Due to π-complexation interaction of Cu+ with aromatic sulfur compounds, the obtained HK-Azo shows obviously higher adsorption capacity on benzothiophene compared with HKUST-1. Upon ultraviolet (UV) and visible irradiation, azobenzene moieties in the PMOFs can transform their configuration freely and reversibly. Such trans/cis isomerization of azobenzene causes exposure/shelter of Cu2O active sites, leading to controllable benzothiophene capture. The HK-Azo exhibits the change of benzothiophene uptake up to 29.7% upon trans and cis isomerization, which is obviously higher than HKUST-1 with negligible change. This work may inspire the development of new adsorption process regulated by light for adsorptive desulfurization that is impossible to realize by conventional PMOFs.

Electronic Supplementary Material

Download File(s)
12274_2022_4992_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Chen, F. Q.; Lai, D.; Guo, L. D.; Wang, J.; Zhang, P. X.; Wu, K. Y.; Zhang, Z. G.; Yang, Q. W.; Yang, Y. W.; Chen, B. L. et al. Deep desulfurization with record SO2 adsorption on the metal-organic frameworks. J. Am. Chem. Soc. 2021, 143, 9040–9047.

[2]

Cai, L. X.; Li, S. C.; Yan, D. N.; Zhou, L. P.; Guo, F.; Sun, Q. F. Water-soluble redox-active cage hosting polyoxometalates for selective desulfurization catalysis. J. Am. Chem. Soc. 2018, 140, 4869–4876.

[3]

Cui, X. L.; Yang, Q. W.; Yang, L. F.; Krishna, R.; Zhang, Z. G.; Bao, Z. B.; Wu, H.; Ren, Q. L.; Zhou, W.; Chen, B. L. et al. Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials. Adv. Mater. 2017, 29, 1606929.

[4]

Xing, S. H.; Liang, J.; Brandt, P.; Schäfer, F.; Nuhnen, A.; Heinen, T.; Boldog, I.; Möllmer, J.; Lange, M.; Weingart, O. et al. Capture and separation of SO2 traces in metal-organic frameworks via pre-synthetic pore environment tailoring by methyl groups. Angew. Chem., Int. Ed. 2021, 60, 17998–18005.

[5]

Ihli, J.; Bloch, L.; Krumeich, F.; Wakonig, K.; Holler, M.; Guizar-Sicairos, M.; Weber, T.; da Silva, J. C.; van Bokhoven, J. A. Hierarchical structure of NiMo hydrodesulfurization catalysts determined by ptychographic X-ray computed tomography. Angew. Chem., Int. Ed. 2020, 59, 17266–17271.

[6]

Luo, J.; Wang, C.; Liu, J. X.; Wei, Y. C.; Chao, Y. H.; Zou, Y. R.; Mu, L. P.; Huang, Y.; Li, H. M.; Zhu, W. S. High-performance adsorptive desulfurization by ternary hybrid boron carbon nitride aerogel. AIChE J. 2021, 67, e17280.

[7]

Ma, Y. L.; Li, A. R.; Wang, C.; Ge, X. B. Preparation of HPW@UiO-66 catalyst with defects and its application in oxidative desulfurization. Chem. Eng. J. 2021, 404, 127062.

[8]

Ding, Y. C.; Wang, J.; Liao, M. Y.; Li, J. C.; Zhang, L. F.; Guo, J.; Wu, H. D. Deep oxidative desulfurization of dibenzothiophene by novel POM-based IL immobilized on well-ordered KIT-6. Chem. Eng. J. 2021, 418, 129470.

[9]

Zhang, Y.; Li, G.; Kong, L. H.; Lu, H. Deep oxidative desulfurization catalyzed by Ti-based metal-organic frameworks. Fuel 2018, 219, 103–110.

[10]

Bhadra, B. N.; Jhung, S. H. Oxidative desulfurization and denitrogenation of fuels using metal-organic framework-based/-derived catalysts. Appl. Catal. B: Environ. 2019, 259, 118021.

[11]

Liu, Y. Q.; Wang, H. Y.; Zhao, J. C.; Liu, Y. Q.; Liu, C. G. Ultra-deep desulfurization by reactive adsorption desulfurization on copper-based catalysts. J. Energy Chem. 2019, 29, 8–16.

[12]

Khan, N. A.; Jhung, S. H. Remarkable adsorption capacity of CuCl2-loaded porous vanadium benzenedicarboxylate for benzothiophene. Angew. Chem., Int. Ed. 2012, 51, 1198–1201.

[13]

Feng, T.; Wang, Y.; Wu, Y. N.; Kabtamu, D. M.; László, K.; Li, F. T. A feasible linker transformation strategy towards the formation of Cu2O nanoparticles for immobilization in hierarchical CuBTC for adsorption desulfurization. J. Mater. Chem. A 2020, 8, 8678–8683.

[14]

Zhang, P.; Xu, Y. Y.; Guo, K. L.; Yin, Y.; Wang, J. L.; Zeng, Y. P. Hierarchical-pore UiO-66 modified with Ag+ for π-complexation adsorption desulfurization. J. Hazard. Mater. 2021, 418, 126247.

[15]

Khan, N. A.; Shin, S.; Hwa Jhung, S. Cu2O-incorporated MAF-6-derived highly porous carbons for the adsorptive denitrogenation of liquid fuel. Chem. Eng. J. 2020, 381, 122675.

[16]

Su, F. S.; Lu, C. CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption. Energy Environ. Sci. 2012, 5, 9021–9027.

[17]

Meng, X.; Huang, H.; Shi, L. Reactive mechanism and regeneration performance of NiZnO/Al2O3-diatomite adsorbent by reactive adsorption desulfurization. Ind. Eng. Chem. Res. 2013, 52, 6092–6100.

[18]

Peng, X.; Cao, D. P. Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas. AIChE J. 2013, 59, 2928–2942.

[19]

Li, C.; Wang, K. B.; Li, J. Z.; Zhang, Q. C. Recent progress in stimulus-responsive two-dimensional metal-organic frameworks. ACS Mater. Lett. 2020, 2, 779–797.

[20]

Haldar, R.; Heinke, L.; Wöll, C. Advanced photoresponsive materials using the metal-organic framework approach. Adv. Mater. 2020, 32, 1905227.

[21]

Rice, A. M.; Martin, C. R.; Galitskiy, V. A.; Berseneva, A. A.; Leith, G. A.; Shustova, N. B. Photophysics modulation in photoswitchable metal-organic frameworks. Chem. Rev. 2020, 120, 8790–8813.

[22]

Xie, K. P.; Ruan, Z. Y.; Lyu, B. H.; Chen, X. X.; Zhang, X. W.; Huang, G. Z.; Chen, Y. C.; Ni, Z. P.; Tong, M. L. Guest-driven light-induced spin change in an azobenzene loaded metal-organic framework. Angew. Chem., Int. Ed. 2021, 60, 27144–27150.

[23]

Wang, M. H.; Zhou, S. N.; Cao, S. F.; Wang, Z. J.; Liu, S. Y.; Wei, S. X.; Chen, Y.; Lu, X. Q. Stimulus-responsive adsorbent materials for CO2 capture and separation. J. Mater. Chem. A 2020, 8, 10519–10533.

[24]

Beharry, A. A.; Sadovski, O.; Woolley, G. A. Azobenzene photoswitching without ultraviolet light. J. Am. Chem. Soc. 2011, 133, 19684–19687.

[25]

Brown, J. W.; Henderson, B. L.; Kiesz, M. D.; Whalley, A. C.; Morris, W.; Grunder, S.; Deng, H. X.; Furukawa, H.; Zink, J. I.; Stoddart, J. F. et al. Photophysical pore control in an azobenzene-containing metal-organic framework. Chem. Sci. 2013, 4, 2858–2864.

[26]

Park, J.; Yuan, D. Q.; Pham, K. T.; Li, J. R.; Yakovenko, A.; Zhou, H. C. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework. J. Am. Chem. Soc. 2012, 134, 99–102.

[27]

Prasetya, N.; Ladewig, B. P. New azo-DMOF-1 MOF as a photoresponsive low-energy CO2 adsorbent and its exceptional CO2/N2 separation performance in mixed matrix membranes. ACS Appl. Mater. Interfaces 2018, 10, 34291–34301.

[28]

Zu, Y.; Guo, Z. S.; Zheng, J.; Hui, Y.; Wang, S. H.; Qin, Y. C.; Zhang, L.; Liu, H. H.; Gao, X. H.; Song, L. J. Investigation of Cu(I)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites. Chem. Eng. J. 2020, 380, 122319.

[29]

Li, Y. X.; Shen, J. X.; Peng, S. S.; Zhang, J. K.; Wu, J.; Liu, X. Q.; Sun, L. B. Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization. Nat. Commun. 2020, 11, 3206.

[30]

Jeong, N. C.; Samanta, B.; Lee, C. Y.; Farha, O. K.; Hupp, J. T. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1. J. Am. Chem. Soc. 2012, 134, 51–54.

[31]

Wilmer, C. E.; Leaf, M.; Lee, C. Y.; Farha, O. K.; Hauser, B. G.; Hupp, J. T.; Snurr, R. Q. Large-scale screening of hypothetical metal-organic frameworks. Nat. Chem. 2012, 4, 83–89.

[32]

Kim, S. Y.; Kim, A. R.; Yoon, J. W.; Kim, H. J.; Bae, Y. S. Creation of mesoporous defects in a microporous metal-organic framework by an acetic acid-fragmented linker co-assembly and its remarkable effects on methane uptake. Chem. Eng. J. 2018, 335, 94–100.

[33]

Wan, L. L.; Zhou, Q. X.; Wang, X.; Wood, T. E.; Wang, L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889–898.

[34]

Liu, P.; Hensen, E. J. M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. J. Am. Chem. Soc. 2013, 135, 14032–14035.

[35]

Cushing, S. K.; Li, J. T.; Meng, F. K.; Senty, T. R.; Suri, S.; Zhi, M. J.; Li, M.; Bristow, A. D.; Wu, N. Q. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J. Am. Chem. Soc. 2012, 134, 15033–15041.

[36]

Fang, Z. L.; Dürholt, J. P.; Kauer, M.; Zhang, W. H.; Lochenie, C.; Jee, B.; Albada, B.; Metzler-Nolte, N.; Pöppl, A.; Weber, B. et al. Structural complexity in metal-organic frameworks: Simultaneous modification of open metal sites and hierarchical porosity by systematic doping with defective linkers. J. Am. Chem. Soc. 2014, 136, 9627–9636.

[37]

Gao, Y. G.; Wu, Q.; Liang, X. Z.; Wang, Z. Y.; Zheng, Z. K.; Wang, P.; Liu, Y. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Cu2O nanoparticles with both {100} and {111} facets for enhancing the selectivity and activity of CO2 electroreduction to ethylene. Adv. Sci. 2020, 7, 1902820.

[38]

Cui, X. F.; Sun, X. D.; Liu, L.; Huang, Q. H.; Yang, H. C.; Chen, C. J.; Nie, S. X.; Zhao, Z. X.; Zhao, Z. X. In-situ fabrication of cellulose foam HKUST-1 and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides. Chem. Eng. J. 2019, 369, 898–907.

[39]

Chen, C. C.; Zhang, W. D.; Zhu, H.; Li, B. G.; Lu, Y. Y.; Zhu, S. P. Fabrication of metal-organic framework-based nanofibrous separator via one-pot electrospinning strategy. Nano Res. 2021, 14, 1465–1470.

[40]

Issa, R.; Ibrahim, F. A.; Al-Ghoul, M.; Hmadeh, M. Controlled growth and composition of multivariate metal-organic frameworks-199 via a reaction-diffusion process. Nano Res. 2021, 14, 423–431.

[41]

Wang, Z.; Henke, S.; Paulus, M.; Welle, A.; Fan, Z. Y.; Rodewald, K.; Rieger, B.; Fischer, R. A. Defect creation in surface-mounted metal-organic framework thin films. ACS Appl. Mater. Interfaces 2020, 12, 2655–2661.

[42]

Albolkany, M. K.; Liu, C. Y.; Wang, Y.; Chen, C. H.; Zhu, C. F.; Chen, X. H.; Liu, B. Molecular surgery at microporous MOF for mesopore generation and renovation. Angew. Chem., Int. Ed. 2021, 60, 14601–14608.

[43]

Kim, Y.; Yang, T.; Yun, G.; Ghasemian, M. B.; Koo, J.; Lee, E.; Cho, S. J.; Kim, K. Hydrolytic transformation of microporous metal-organic frameworks to hierarchical micro- and mesoporous MOFs. Angew. Chem., Int. Ed. 2015, 54, 13273–13278.

[44]

Li, Y. X.; Jiang, W. J.; Tan, P.; Liu, X. Q.; Zhang, D. Y.; Sun, L. B. What matters to the adsorptive desulfurization performance of metal-organic frameworks? J. Phys. Chem. C 2015, 119, 21969–21977.

[45]

Kumar, A.; Madden, D. G.; Lusi, M.; Chen, K. J.; Daniels, E. A.; Curtin, T.; Perry IV, J. J.; Zaworotko, M. J. Direct air capture of CO2 by physisorbent materials. Angew. Chem., Int. Ed. 2015, 54, 14372–14377.

[46]

Liu, Y. G.; Liu, G. L.; Tan, P.; Gu, C.; Li, J. J.; Liu, X. Q.; Sun, L. B. Near-infrared light triggered release of ethane from a photothermal metal-organic framework. Chem. Eng. J. 2021, 420, 130490.

[47]

Prasetya, N.; Ladewig, B. P. An insight into the effect of azobenzene functionalities studied in UiO-66 frameworks for low energy CO2 capture and CO2/N2 membrane separation. J. Mater. Chem. A 2019, 7, 15164–15172.

[48]

Jiang, Y.; Tan, P.; Qi, S. C.; Gu, C.; Peng, S. S.; Wu, F.; Liu, X. Q.; Sun, L. B. Breathing metal-organic polyhedra controlled by light for carbon dioxide capture and liberation. CCS Chem. 2021, 3, 1659–1668.

Nano Research
Pages 3333-3338
Cite this article:
Gu Y-Y, Liu G, Qi S-C, et al. Photo-switchable Cu+ sites in metal-organic frameworks for adsorptive desulfurization. Nano Research, 2023, 16(2): 3333-3338. https://doi.org/10.1007/s12274-022-4992-0
Topics:

1151

Views

8

Crossref

6

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 21 June 2022
Revised: 15 August 2022
Accepted: 31 August 2022
Published: 11 October 2022
© Tsinghua University Press 2022
Return