Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Ammonia has been recognized as a promising fuel for solid oxide fuel cells (SOFCs) because of its relatively high hydrogen content and high energy density. However, the effective catalysis of ammonia on the surface of state-of-the-art anode greatly hinders the further development of direct ammonia SOFCs. In this study, we report our findings of surface activating and stabilizing of a Ni-based cermet anode for highly efficient and durable operation on ammonia fuel, achieved by a surface coating of CeO2−δ nanoparticles (NPs). When incorporated into a Ni-yttria-stabilized zirconia (Ni-YSZ) anode-supported single cell, the coatings demonstrate an improved electrochemical reaction activity and stability, achieving a high peak power density of 0.941 W·cm−2 at 700 °C, and a promising stability of ~ 60 h (degradation rate of 0.127% h−1 at 0.5 A·cm−2), much better than those of cells with a bare anode (~ 0.673 W·cm−2 and degradation rate of 0.294% h−1 at 0.5 A·cm-2). The catalytic NPs significantly enhance the reaction activity toward the decomposition of ammonia and oxidation of hydrogen, especially at low temperatures (< 700 °C), as confirmed by the detailed distribution of relaxation time (DRT) analyses of the impedance spectra of the cells on NH3 fuel.
Zhang, Y.; Chen, B.; Guan, D. Q.; Xu, M. G.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. P. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251.
Papac, M.; Stevanović, V.; Zakutayev, A.; O’Hayre, R. Triple ionic-electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 2021, 20, 301–313.
Boldrin, P.; Brandon, N. P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2019, 2, 571–577.
Duan, C. C.; Kee, R. J.; Zhu, H. Y.; Karakaya, C.; Chen, Y. C.; Ricote, S.; Jarry, A.; Crumlin, E. J.; Hook, D.; Braun, R. et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 2018, 557, 217–222.
Jensen, S. H.; Graves, C.; Mogensen, M.; Wendel, C.; Braun, R.; Hughes, G.; Gao, Z.; Barnett, S. A. Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4. Energy Environ. Sci. 2015, 8, 2471–2479.
Chen, Y.; DeGlee, B.; Tang, Y.; Wang, Z. Y.; Zhao, B. T.; Wei, Y. C.; Zhang, L.; Yoo, S.; Pei, K.; Kim, J. H. et al. A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nat. Energy 2018, 3, 1042–1050.
Yang, J.; Molouk, A. F. S.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3−δ anode for direct ammonia-fueled solid oxide fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 7406–7412.
Milcarek, R. J.; Nakamura, H.; Tezuka, T.; Maruta, K.; Ahn, J. Investigation of microcombustion reforming of ethane/air and micro-tubular solid oxide fuel cells. J. Power Sources 2020, 450, 227606.
Ru, Y. L.; Sang, J. K.; Xia, C. R.; Wei, W. C. J.; Guan, W. B. Durability of direct internal reforming of methanol as fuel for solid oxide fuel cell with double-sided cathodes. Int. J. Hydrog. Energy 2020, 45, 7069–7076.
Somacescu, S.; Cioatera, N.; Osiceanu, P.; Calderon-Moreno, J. M.; Ghica, C.; Neaţu, F.; Florea, M. Bimodal mesoporous NiO/CeO2−δ-YSZ with enhanced carbon tolerance in catalytic partial oxidation of methane-Potential IT-SOFCs anode. Appl. Catal. B: Environ. 2019, 241, 393–406.
Cinti, G.; Desideri, U.; Penchini, D.; Discepoli, G. Experimental analysis of SOFC fuelled by ammonia. Fuel Cells 2014, 14, 221–230.
Wojcik, A.; Middleton, H.; Damopoulos, I.; Van Herle, J. Ammonia as a fuel in solid oxide fuel cells. J. Power Sources 2003, 118, 342–348.
Ma, Q. L.; Ma, J. J.; Zhou, S.; Yan, R. Q.; Gao, J. F.; Meng, G. Y. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. J. Power Sources 2007, 164, 86–89.
Ma, Q. L.; Peng, R. R.; Tian, L. Z.; Meng, G. Y. Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells. Electrochem. Commun. 2006, 8, 1791–1795.
Fournier, G. G. M.; Cumming, I. W.; Hellgardt, K. High performance direct ammonia solid oxide fuel cell. J. Power Sources 2006, 162, 198–206.
Dekker, N. J. J.; Rietveld, G. Highly efficient conversion of ammonia in electricity by solid oxide fuel cells. J. Fuel Cell Sci. Technol. 2006, 3, 499–502.
Maffei, N.; Pelletier, L.; Charland, J. P.; McFarlan, A. An ammonia fuel cell using a mixed ionic and electronic conducting electrolyte. J. Power Sources 2006, 162, 165–167.
Ni, M.; Leung, D. Y. C.; Leung, M. K. H. Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte. J. Power Sources 2008, 183, 682–686.
Meng, G. Y.; Jiang, C. R.; Ma, J. J.; Ma, Q. L.; Liu, X. Q. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen. J. Power Sources 2007, 173, 189–193.
Gao, Y.; Chen, D. J.; Saccoccio, M.; Lu, Z. H.; Ciucci, F. From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 2016, 27, 499–508.
Yang, J.; Molouk, A. F. S.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. A stability study of Ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 28701–28707.
Song, Y. F.; Li, H. D.; Xu, M. G.; Yang, G. M.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. P. Infiltrated NiCo alloy nanoparticle decorated perovskite oxide: A highly active, stable, and antisintering anode for direct-ammonia solid oxide fuel cells. Small 2020, 16, 2001859.
Zhang, H.; Zhou, Y. C.; Pei, K.; Pan, Y. X.; Xu, K.; Ding, Y.; Zhao, B. T.; Sasaki, K.; Choi, Y.; Chen, Y. et al. An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy Environ. Sci. 2022, 15, 287–295.
Pan, Y. X.; Zhang, H.; Xu, K.; Zhou, Y. C.; Zhao, B. T.; Yuan, W.; Sasaki, K.; Choi, Y.; Chen, Y.; Liu, M. L. A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer. Appl. Catal. B: Environ. 2022, 306, 121071.
Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D. S. Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition. Energy Environ. Sci. 2012, 5, 6278–6289.
Molouk, A. F. S.; Yang, J.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells. J. Power Sources 2016, 305, 72–79.
Wang, Y. H.; Yang, J.; Wang, J. X.; Guan, W. B.; Chi, B.; Jia, L. C.; Chen, J. Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Low-temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells. J. Electrochem. Soc. 2020, 167, 064501.
Xu, K.; Chen, Y.; Liu, M. L. Triple-phase boundaries (TPBs) in fuel cells and electrolyzers. Encycloped. Energy Storage 2021, 2, 299–328.
Zheng, W. Q.; Zhang, J.; Ge, Q. J.; Xu, H. Y.; Li, W. Z. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen. Appl. Catal. B: Environ. 2008, 80, 98–105.
Pei, K.; Zhou, Y. C.; Xu, K.; He, Z. Y.; Chen, Y.; Zhang, W. L.; Yoo, S.; Zhao, B. T.; Yuan, W.; Liu, M. L. et al. Enhanced Cr-tolerance of an SOFC cathode by an efficient electro-catalyst coating. Nano Energy 2020, 72, 104704.
Zhang, H.; Xu, K.; He, F.; Zhou, Y. C.; Sasaki, K.; Zhao, B. T.; Choi, Y.; Liu, M. L.; Chen, Y. Surface regulating of a double-perovskite electrode for protonic ceramic fuel cells to enhance oxygen reduction activity and contaminants poisoning tolerance. Adv. Energy Mater 2022, 12, 2200761.
Suzuki, T.; Hasan, Z.; Funahashi, Y.; Yamaguchi, T.; Fujishiro, Y.; Awano, M. Impact of anode microstructure on solid oxide fuel cells. Science 2009, 325, 852–855.
Pan, Y. X.; Pei, K.; Zhou, Y. C.; Liu, T.; Liu, M. L.; Chen, Y. A straight, open and macro-porous fuel electrode-supported protonic ceramic electrochemical cell. J. Mater. Chem. A 2021, 9, 10789–10795.
Chen, Y.; Zhang, Y. X.; Lin, Y.; Yang, Z. B.; Su, D.; Han, M. F.; Chen, F. L. Direct-methane solid oxide fuel cells with hierarchically porous Ni-based anode deposited with nanocatalyst layer. Nano Energy 2014, 10, 1–9.
Ma, Q. L.; Peng, R. R.; Lin, Y. J.; Gao, J. F.; Meng, G. Y. A high-performance ammonia-fueled solid oxide fuel cell. J. Power Sources 2006, 161, 95–98.
Xie, K.; Ma, Q. L.; Lin, B.; Jiang, Y. Z.; Gao, J. F.; Liu, X. Q.; Meng, G. Y. An ammonia fuelled SOFC with a BaCe0.9Nd0.1O3−δ thin electrolyte prepared with a suspension spray. J. Power Sources 2007, 170, 38–41.
Lin, Y.; Ran, R.; Guo, Y. M.; Zhou, W.; Cai, R.; Wang, J.; Shao, Z. P. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. Int. J. Hydrog. Energy 2010, 35, 2637–2642.
Akimoto, W.; Fujimoto, T.; Saito, M.; Inaba, M.; Yoshida, H.; Inagaki, T. Ni-Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells. Solid State Ion. 2014, 256, 1–4.
Itagaki, Y.; Cui, J.; Ito, N.; Aono, H.; Yahiro, H. Electrophoretically deposited Ni-loaded (SmO15)0.2(CeO2)0.8 anode for ammonia-fueled solid oxide fuel cell. ECS Trans 2018, 85, 779–786.
Shy, S. S.; Hsieh, S. C.; Chang, H. Y. A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements. J. Power Sources 2018, 396, 80–87.
Stoeckl, B.; Subotić, V.; Preininger, M.; Schwaiger, M.; Evic, N.; Schroettner, H.; Hochenauer, C. Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes. Electrochim. Acta 2019, 298, 874–883.
Wang, Y. H.; Gu, Y. C.; Zhang, H.; Yang, J.; Wang, J. X.; Guan, W. B.; Chen, J. Y.; Chi, B.; Jia, L. C.; Muroyama, H. et al. Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells. Appl. Energy 2020, 270, 115185.
Miyazaki, K.; Muroyama, H.; Matsui, T.; Eguchi, K. Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells. Sustainable Energy Fuels 2020, 4, 5238–5246.
He, F.; Gao, Q. N.; Liu, Z. Q.; Yang, M. T.; Ran, R.; Yang, G. M.; Wang, W.; Zhou, W.; Shao, Z. P. A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures. Adv. Energy Mater. 2021, 11, 2003916.
Zhu, L. Z.; Cadigan, C.; Duan, C. C.; Huang, J.; Bian, L. Z.; Le, L.; Hernandez, C. H.; Avance, V.; O’Hayre, R.; Sullivan, N. P. Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst. Commun. Chem. 2021, 4, 121.
Xiong, X. D.; Yu, J.; Huang, X. J.; Zou, D.; Song, Y. F.; Xu, M. G.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Slightly ruthenium doping enables better alloy nanoparticle exsolution of perovskite anode for high-performance direct-ammonia solid oxide fuel cells. J. Mater. Sci. Technol. 2022, 125, 51–58.
Choi, S. M.; An, H.; Yoon, K. J.; Kim, B. K.; Lee, H. W.; Son, J. W.; Kim, H.; Shin, D.; Ji, H. I.; Lee, J. H. Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte. Appl. Energy 2019, 233–234, 29–36.
Shi, N.; Su, F.; Huan, D. M.; Xie, Y.; Lin, J.; Tan, W. Z.; Peng, R. R.; Xia, C. R.; Chen, C. S.; Lu, Y. L. Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology. J. Mater. Chem. A 2017, 5, 19664–19671.
Ma, J. Y.; Pan, Y. X.; Wang, Y. K.; Chen, Y. A Sr and Ni doped ruddlesden-popper perovskite oxide La1.6Sr0.4Cu0.6Ni0.4O4+δ as a promising cathode for protonic ceramic fuel cells. J. Power Sources 2021, 509, 230369.
Zhang, Y. X.; Chen, Y.; Yan, M. F.; Chen, F. L. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power Sources 2015, 283, 464–477.
Sumi, H.; Yamaguchi, T.; Hamamoto, K.; Suzuki, T.; Fujishiro, Y.; Matsui, T.; Eguchi, K. AC impedance characteristics for anode-supported microtubular solid oxide fuel cells. Electrochim. Acta 2012, 67, 159–165.
Schichlein, H.; Müller, A. C.; Voigts, M.; Krügel, A.; Ivers-Tiffée, E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J. Appl. Electrochem. 2002, 32, 875–882.
Leonide, A.; Sonn, V.; Weber, A.; Ivers-Tiffée, E. Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. J. Electrochem. Soc. 2008, 155, B36.
Hua, B.; Yan, N.; Li, M.; Sun, Y. F.; Zhang, Y. Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J. L. Anode-engineered protonic ceramic fuel cell with excellent performance and fuel compatibility. Adv. Mater. 2016, 28, 8922–8926.