AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Activating and stabilizing the surface of anode for high-performing direct-ammonia solid oxide fuel cells

Kang XuFeng ZhuMingyang HouCanan LiHua ZhangYu Chen( )
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
Show Author Information

Graphical Abstract

We report a high-performance direct-ammonia solid oxide fuel cell (SOFC) with enhanced electrocatalytic activity for ammonia oxidation reaction and excellent durability, achieved by a cost-effective surface coating of nano CeO2−δ.

Abstract

Ammonia has been recognized as a promising fuel for solid oxide fuel cells (SOFCs) because of its relatively high hydrogen content and high energy density. However, the effective catalysis of ammonia on the surface of state-of-the-art anode greatly hinders the further development of direct ammonia SOFCs. In this study, we report our findings of surface activating and stabilizing of a Ni-based cermet anode for highly efficient and durable operation on ammonia fuel, achieved by a surface coating of CeO2−δ nanoparticles (NPs). When incorporated into a Ni-yttria-stabilized zirconia (Ni-YSZ) anode-supported single cell, the coatings demonstrate an improved electrochemical reaction activity and stability, achieving a high peak power density of 0.941 W·cm−2 at 700 °C, and a promising stability of ~ 60 h (degradation rate of 0.127% h−1 at 0.5 A·cm−2), much better than those of cells with a bare anode (~ 0.673 W·cm−2 and degradation rate of 0.294% h−1 at 0.5 A·cm-2). The catalytic NPs significantly enhance the reaction activity toward the decomposition of ammonia and oxidation of hydrogen, especially at low temperatures (< 700 °C), as confirmed by the detailed distribution of relaxation time (DRT) analyses of the impedance spectra of the cells on NH3 fuel.

Electronic Supplementary Material

Download File(s)
12274_2022_4993_MOESM1_ESM.pdf (721.3 KB)
12274_2022_4993_MOESM2_ESM.pdf (3.6 MB)

References

[1]

Zhang, Y.; Chen, B.; Guan, D. Q.; Xu, M. G.; Ran, R.; Ni, M.; Zhou, W.; O’Hayre, R.; Shao, Z. P. Thermal-expansion offset for high-performance fuel cell cathodes. Nature 2021, 591, 246–251.

[2]

Papac, M.; Stevanović, V.; Zakutayev, A.; O’Hayre, R. Triple ionic-electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 2021, 20, 301–313.

[3]

Boldrin, P.; Brandon, N. P. Progress and outlook for solid oxide fuel cells for transportation applications. Nat. Catal. 2019, 2, 571–577.

[4]

Duan, C. C.; Kee, R. J.; Zhu, H. Y.; Karakaya, C.; Chen, Y. C.; Ricote, S.; Jarry, A.; Crumlin, E. J.; Hook, D.; Braun, R. et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 2018, 557, 217–222.

[5]

Jensen, S. H.; Graves, C.; Mogensen, M.; Wendel, C.; Braun, R.; Hughes, G.; Gao, Z.; Barnett, S. A. Large-scale electricity storage utilizing reversible solid oxide cells combined with underground storage of CO2 and CH4. Energy Environ. Sci. 2015, 8, 2471–2479.

[6]

Chen, Y.; DeGlee, B.; Tang, Y.; Wang, Z. Y.; Zhao, B. T.; Wei, Y. C.; Zhang, L.; Yoo, S.; Pei, K.; Kim, J. H. et al. A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nat. Energy 2018, 3, 1042–1050.

[7]

Yang, J.; Molouk, A. F. S.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Electrochemical and catalytic properties of Ni/BaCe0.75Y0.25O3−δ anode for direct ammonia-fueled solid oxide fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 7406–7412.

[8]

Milcarek, R. J.; Nakamura, H.; Tezuka, T.; Maruta, K.; Ahn, J. Investigation of microcombustion reforming of ethane/air and micro-tubular solid oxide fuel cells. J. Power Sources 2020, 450, 227606.

[9]

Ru, Y. L.; Sang, J. K.; Xia, C. R.; Wei, W. C. J.; Guan, W. B. Durability of direct internal reforming of methanol as fuel for solid oxide fuel cell with double-sided cathodes. Int. J. Hydrog. Energy 2020, 45, 7069–7076.

[10]

Somacescu, S.; Cioatera, N.; Osiceanu, P.; Calderon-Moreno, J. M.; Ghica, C.; Neaţu, F.; Florea, M. Bimodal mesoporous NiO/CeO2−δ-YSZ with enhanced carbon tolerance in catalytic partial oxidation of methane-Potential IT-SOFCs anode. Appl. Catal. B: Environ. 2019, 241, 393–406.

[11]

Cinti, G.; Desideri, U.; Penchini, D.; Discepoli, G. Experimental analysis of SOFC fuelled by ammonia. Fuel Cells 2014, 14, 221–230.

[12]

Wojcik, A.; Middleton, H.; Damopoulos, I.; Van Herle, J. Ammonia as a fuel in solid oxide fuel cells. J. Power Sources 2003, 118, 342–348.

[13]

Ma, Q. L.; Ma, J. J.; Zhou, S.; Yan, R. Q.; Gao, J. F.; Meng, G. Y. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte. J. Power Sources 2007, 164, 86–89.

[14]

Ma, Q. L.; Peng, R. R.; Tian, L. Z.; Meng, G. Y. Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells. Electrochem. Commun. 2006, 8, 1791–1795.

[15]

Fournier, G. G. M.; Cumming, I. W.; Hellgardt, K. High performance direct ammonia solid oxide fuel cell. J. Power Sources 2006, 162, 198–206.

[16]

Dekker, N. J. J.; Rietveld, G. Highly efficient conversion of ammonia in electricity by solid oxide fuel cells. J. Fuel Cell Sci. Technol. 2006, 3, 499–502.

[17]

Maffei, N.; Pelletier, L.; Charland, J. P.; McFarlan, A. An ammonia fuel cell using a mixed ionic and electronic conducting electrolyte. J. Power Sources 2006, 162, 165–167.

[18]

Ni, M.; Leung, D. Y. C.; Leung, M. K. H. Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte. J. Power Sources 2008, 183, 682–686.

[19]

Meng, G. Y.; Jiang, C. R.; Ma, J. J.; Ma, Q. L.; Liu, X. Q. Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen. J. Power Sources 2007, 173, 189–193.

[20]

Gao, Y.; Chen, D. J.; Saccoccio, M.; Lu, Z. H.; Ciucci, F. From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells. Nano Energy 2016, 27, 499–508.

[21]

Yang, J.; Molouk, A. F. S.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. A stability study of Ni/yttria-stabilized zirconia anode for direct ammonia solid oxide fuel cells. ACS Appl. Mater. Interfaces 2015, 7, 28701–28707.

[22]

Song, Y. F.; Li, H. D.; Xu, M. G.; Yang, G. M.; Wang, W.; Ran, R.; Zhou, W.; Shao, Z. P. Infiltrated NiCo alloy nanoparticle decorated perovskite oxide: A highly active, stable, and antisintering anode for direct-ammonia solid oxide fuel cells. Small 2020, 16, 2001859.

[23]

Zhang, H.; Zhou, Y. C.; Pei, K.; Pan, Y. X.; Xu, K.; Ding, Y.; Zhao, B. T.; Sasaki, K.; Choi, Y.; Chen, Y. et al. An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy Environ. Sci. 2022, 15, 287–295.

[24]

Pan, Y. X.; Zhang, H.; Xu, K.; Zhou, Y. C.; Zhao, B. T.; Yuan, W.; Sasaki, K.; Choi, Y.; Chen, Y.; Liu, M. L. A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer. Appl. Catal. B: Environ. 2022, 306, 121071.

[25]

Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D. S. Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition. Energy Environ. Sci. 2012, 5, 6278–6289.

[26]

Molouk, A. F. S.; Yang, J.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells. J. Power Sources 2016, 305, 72–79.

[27]

Wang, Y. H.; Yang, J.; Wang, J. X.; Guan, W. B.; Chi, B.; Jia, L. C.; Chen, J. Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Low-temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells. J. Electrochem. Soc. 2020, 167, 064501.

[28]

Xu, K.; Chen, Y.; Liu, M. L. Triple-phase boundaries (TPBs) in fuel cells and electrolyzers. Encycloped. Energy Storage 2021, 2, 299–328.

[29]

Zheng, W. Q.; Zhang, J.; Ge, Q. J.; Xu, H. Y.; Li, W. Z. Effects of CeO2 addition on Ni/Al2O3 catalysts for the reaction of ammonia decomposition to hydrogen. Appl. Catal. B: Environ. 2008, 80, 98–105.

[30]

Pei, K.; Zhou, Y. C.; Xu, K.; He, Z. Y.; Chen, Y.; Zhang, W. L.; Yoo, S.; Zhao, B. T.; Yuan, W.; Liu, M. L. et al. Enhanced Cr-tolerance of an SOFC cathode by an efficient electro-catalyst coating. Nano Energy 2020, 72, 104704.

[31]

Zhang, H.; Xu, K.; He, F.; Zhou, Y. C.; Sasaki, K.; Zhao, B. T.; Choi, Y.; Liu, M. L.; Chen, Y. Surface regulating of a double-perovskite electrode for protonic ceramic fuel cells to enhance oxygen reduction activity and contaminants poisoning tolerance. Adv. Energy Mater 2022, 12, 2200761.

[32]

Suzuki, T.; Hasan, Z.; Funahashi, Y.; Yamaguchi, T.; Fujishiro, Y.; Awano, M. Impact of anode microstructure on solid oxide fuel cells. Science 2009, 325, 852–855.

[33]

Pan, Y. X.; Pei, K.; Zhou, Y. C.; Liu, T.; Liu, M. L.; Chen, Y. A straight, open and macro-porous fuel electrode-supported protonic ceramic electrochemical cell. J. Mater. Chem. A 2021, 9, 10789–10795.

[34]

Chen, Y.; Zhang, Y. X.; Lin, Y.; Yang, Z. B.; Su, D.; Han, M. F.; Chen, F. L. Direct-methane solid oxide fuel cells with hierarchically porous Ni-based anode deposited with nanocatalyst layer. Nano Energy 2014, 10, 1–9.

[35]

Ma, Q. L.; Peng, R. R.; Lin, Y. J.; Gao, J. F.; Meng, G. Y. A high-performance ammonia-fueled solid oxide fuel cell. J. Power Sources 2006, 161, 95–98.

[36]

Xie, K.; Ma, Q. L.; Lin, B.; Jiang, Y. Z.; Gao, J. F.; Liu, X. Q.; Meng, G. Y. An ammonia fuelled SOFC with a BaCe0.9Nd0.1O3−δ thin electrolyte prepared with a suspension spray. J. Power Sources 2007, 170, 38–41.

[37]

Lin, Y.; Ran, R.; Guo, Y. M.; Zhou, W.; Cai, R.; Wang, J.; Shao, Z. P. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. Int. J. Hydrog. Energy 2010, 35, 2637–2642.

[38]

Akimoto, W.; Fujimoto, T.; Saito, M.; Inaba, M.; Yoshida, H.; Inagaki, T. Ni-Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells. Solid State Ion. 2014, 256, 1–4.

[39]

Itagaki, Y.; Cui, J.; Ito, N.; Aono, H.; Yahiro, H. Electrophoretically deposited Ni-loaded (SmO15)0.2(CeO2)0.8 anode for ammonia-fueled solid oxide fuel cell. ECS Trans 2018, 85, 779–786.

[40]

Shy, S. S.; Hsieh, S. C.; Chang, H. Y. A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements. J. Power Sources 2018, 396, 80–87.

[41]

Stoeckl, B.; Subotić, V.; Preininger, M.; Schwaiger, M.; Evic, N.; Schroettner, H.; Hochenauer, C. Characterization and performance evaluation of ammonia as fuel for solid oxide fuel cells with Ni/YSZ anodes. Electrochim. Acta 2019, 298, 874–883.

[42]

Wang, Y. H.; Gu, Y. C.; Zhang, H.; Yang, J.; Wang, J. X.; Guan, W. B.; Chen, J. Y.; Chi, B.; Jia, L. C.; Muroyama, H. et al. Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells. Appl. Energy 2020, 270, 115185.

[43]

Miyazaki, K.; Muroyama, H.; Matsui, T.; Eguchi, K. Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells. Sustainable Energy Fuels 2020, 4, 5238–5246.

[44]

He, F.; Gao, Q. N.; Liu, Z. Q.; Yang, M. T.; Ran, R.; Yang, G. M.; Wang, W.; Zhou, W.; Shao, Z. P. A new Pd doped proton conducting perovskite oxide with multiple functionalities for efficient and stable power generation from ammonia at reduced temperatures. Adv. Energy Mater. 2021, 11, 2003916.

[45]

Zhu, L. Z.; Cadigan, C.; Duan, C. C.; Huang, J.; Bian, L. Z.; Le, L.; Hernandez, C. H.; Avance, V.; O’Hayre, R.; Sullivan, N. P. Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst. Commun. Chem. 2021, 4, 121.

[46]

Xiong, X. D.; Yu, J.; Huang, X. J.; Zou, D.; Song, Y. F.; Xu, M. G.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. P. Slightly ruthenium doping enables better alloy nanoparticle exsolution of perovskite anode for high-performance direct-ammonia solid oxide fuel cells. J. Mater. Sci. Technol. 2022, 125, 51–58.

[47]

Choi, S. M.; An, H.; Yoon, K. J.; Kim, B. K.; Lee, H. W.; Son, J. W.; Kim, H.; Shin, D.; Ji, H. I.; Lee, J. H. Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte. Appl. Energy 2019, 233–234, 29–36.

[48]

Shi, N.; Su, F.; Huan, D. M.; Xie, Y.; Lin, J.; Tan, W. Z.; Peng, R. R.; Xia, C. R.; Chen, C. S.; Lu, Y. L. Performance and DRT analysis of P-SOFCs fabricated using new phase inversion combined tape casting technology. J. Mater. Chem. A 2017, 5, 19664–19671.

[49]

Ma, J. Y.; Pan, Y. X.; Wang, Y. K.; Chen, Y. A Sr and Ni doped ruddlesden-popper perovskite oxide La1.6Sr0.4Cu0.6Ni0.4O4+δ as a promising cathode for protonic ceramic fuel cells. J. Power Sources 2021, 509, 230369.

[50]

Zhang, Y. X.; Chen, Y.; Yan, M. F.; Chen, F. L. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power Sources 2015, 283, 464–477.

[51]

Sumi, H.; Yamaguchi, T.; Hamamoto, K.; Suzuki, T.; Fujishiro, Y.; Matsui, T.; Eguchi, K. AC impedance characteristics for anode-supported microtubular solid oxide fuel cells. Electrochim. Acta 2012, 67, 159–165.

[52]

Schichlein, H.; Müller, A. C.; Voigts, M.; Krügel, A.; Ivers-Tiffée, E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J. Appl. Electrochem. 2002, 32, 875–882.

[53]

Leonide, A.; Sonn, V.; Weber, A.; Ivers-Tiffée, E. Evaluation and modeling of the cell resistance in anode-supported solid oxide fuel cells. J. Electrochem. Soc. 2008, 155, B36.

[54]

Hua, B.; Yan, N.; Li, M.; Sun, Y. F.; Zhang, Y. Q.; Li, J.; Etsell, T.; Sarkar, P.; Luo, J. L. Anode-engineered protonic ceramic fuel cell with excellent performance and fuel compatibility. Adv. Mater. 2016, 28, 8922–8926.

Nano Research
Pages 2454-2462
Cite this article:
Xu K, Zhu F, Hou M, et al. Activating and stabilizing the surface of anode for high-performing direct-ammonia solid oxide fuel cells. Nano Research, 2023, 16(2): 2454-2462. https://doi.org/10.1007/s12274-022-4993-z
Topics:

693

Views

20

Crossref

21

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 01 July 2022
Revised: 18 August 2022
Accepted: 31 August 2022
Published: 12 October 2022
© Tsinghua University Press 2022
Return