AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Annealing, solvation, and mirror-plating effects in phosphonium chloroaluminate ionic liquids

Zelei Zhang1( )Atsushi Kitada2( )Kazuhiro Fukami1Kuniaki Murase1
Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
Show Author Information

Graphical Abstract

Acidic [P6,6,6,14]Cl–AlCl3 ionic liquids (ILs) unexpectedly present an annealing effect due to the bending of the long tetradecyl chains in [P6,6,6,14]+. Meanwhile, their solvation and mirror-plating effects enable the regulation in physicochemical properties and deposition of nano-sized Al particles without brighteners, respectively.

Abstract

The physicochemical properties of a specific ionic liquid (IL) are naturally considered to be constant at a given temperature. However, a series of eutectic melts of trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14]Cl) with aluminum chloride (AlCl3) is an exception. The viscosity of Al2Cl7-dominated [P6,6,6,14]Cl–AlCl3 ILs (i.e., AlCl3 mole fraction x = 0.60–0.67) gradually increased as a function of annealing. Annealing also influenced the ultraviolet–visible spectra, nuclear magnetic resonance spectra, and the glass transition temperature of the ILs. Such annealing-induced variations in physicochemical properties were not observed in the AlCl4- and Cl-dominated ILs. In particular, the ionic conductivities of the ILs (x = 0.60–0.67) were strongly decoupled from their viscosities during annealing. Ab initio calculations revealed the bending of the long tetradecyl chains in [P6,6,6,14]+ coupled with Al2Cl7, while neither Cl nor AlCl4 caused bending. In general, [P6,6,6,14]+-based ILs are recognized as sponge-like structures that consist of nano-scale polar and non-polar domains. We propose a gradual structurization process in Al2Cl7-dominated ILs to account for their unusual physicochemical properties. Moreover, the addition of tetradecane, solvated in the non-polar domains of the ILs, substantially reduced the viscosity of the structured IL with x = 0.67. Mirror Al electroplating is possible without a brightener, using the x = 0.67 ILs, regardless of annealing or the admixture of tetradecane.

Electronic Supplementary Material

Download File(s)
12274_2022_4999_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150.

[2]

Greer, A. J.; Jacquemin, J.; Hardacre, C. Industrial applications of ionic liquids. Molecules 2020, 25, 5207.

[3]

Wasserscheid, P.; Keim, W. Ionic liquids—New “solutions” for transition metal catalysis. Angew. Chem., Int. Ed. 2000, 39, 3772–3789.

[4]

Fumino, K.; Fossog, V.; Stange, P.; Paschek, D.; Hempelmann, R.; Ludwig, R. Controlling the subtle energy balance in protic ionic liquids: Dispersion forces compete with hydrogen bonds. Angew. Chem., Int. Ed. 2015, 54, 2792–2795.

[5]

Hunt, P. A.; Ashworth, C. R.; Matthews, R. P. Hydrogen bonding in ionic liquids. Chem. Soc. Rev. 2015, 44, 1257–1288.

[6]

Dong, K.; Zhang, S. J.; Wang, J. J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem. Commun. 2016, 52, 6744–6764.

[7]

Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629.

[8]

Hayes, R.; Warr, G. G.; Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 2015, 115, 6357–6426.

[9]

Wang, Y. L.; Li, B.; Sarman, S.; Mocci, F.; Lu, Z. Y.; Yuan, J. Y.; Laaksonen, A.; Fayer, M. D. Microstructural and dynamical heterogeneities in ionic liquids. Chem. Rev. 2020, 120, 5798–5877.

[10]

Zhang, S. G.; Zhang, J. H.; Zhang, Y.; Deng, Y. Q. Nanoconfined ionic liquids. Chem. Rev. 2017, 117, 6755–6833.

[11]

Dong, K.; Liu, X. M.; Dong, H. F.; Zhang, X. P.; Zhang, S. J. Multiscale studies on ionic liquids. Chem. Rev. 2017, 117, 6636–6695.

[12]

Triolo, A.; Russina, O.; Fazio, B.; Triolo, R.; Di Cola, E. Morphology of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids. Chem. Phys. Lett. 2008, 457, 362–365.

[13]

Lopes, J. N. A. C.; Pádua, A. A. H. Nanostructural organization in ionic liquids. J. Phys. Chem. B 2006, 110, 3330–3335.

[14]

Wang, Y. L.; Li, B.; Sarman, S.; Laaksonen, A. Microstructures and dynamics of tetraalkylphosphonium chloride ionic liquids. J. Chem. Phys. 2017, 147, 224502.

[15]

Kashyap, H. K.; Santos, C. S.; Murthy, N. S.; Hettige, J. J.; Kerr, K.; Ramati, S.; Gwon, J.; Gohdo, M.; Lall-Ramnarine, S. I.; Wishart, J. F. et al. Structure of 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ionic liquids with linear, branched, and cyclic alkyl groups. J. Phys. Chem. B 2013, 117, 15328–15337.

[16]

Nemoto, F.; Kofu, M.; Yamamuro, O. Thermal and structural studies of imidazolium-based ionic liquids with and without liquid-crystalline phases: The origin of nanostructure. J. Phys. Chem. B 2015, 119, 5028–5034.

[17]

Triolo, A.; Russina, O.; Bleif, H. J.; Di Cola, E. Nanoscale segregation in room temperature ionic liquids. J. Phys. Chem. B 2007, 111, 4641–4644.

[18]

Santos, C. S.; Murthy, N. S.; Baker, G. A.; Castner, E. W. Jr. Communication: X-ray scattering from ionic liquids with pyrrolidinium cations. J. Chem. Phys. 2011, 134, 121101.

[19]

Wang, Y. T. Disordering and reordering of ionic liquids under an external electric field. J. Phys. Chem. B 2009, 113, 11058–11060.

[20]

Dhungana, K. B.; Margulis, C. J. Comparison of the structural response to pressure of ionic liquids with ether and alkyl functionalities. J. Phys. Chem. B 2017, 121, 6890–6897.

[21]

Takekiyo, T.; Koyama, Y.; Shigemi, M.; Matsuishi, K.; Abe, H.; Hamaya, N.; Yoshimura, Y. Conformational adjustment for high-pressure glass formation of 1-alkyl-3-methylimidazolium tetrafluoroborate. Phys. Chem. Chem. Phys. 2017, 19, 863–870.

[22]

Hettige, J. J.; Araque, J. C.; Kashyap, H. K.; Margulis, C. J. Communication: Nanoscale structure of tetradecyltrihexylphosphonium based ionic liquids. J. Chem. Phys. 2016, 144, 121102.

[23]

Kashyap, H. K.; Santos, C. S.; Annapureddy, H. V. R.; Murthy, N. S.; Margulis, C. J.; Castner, E. W. Jr. Temperature-dependent structure of ionic liquids: X-ray scattering and simulations. Faraday Discuss. 2012, 154, 133–143.

[24]

Hettige, J. J.; Kashyap, H. K.; Margulis, C. J. Communication: Anomalous temperature dependence of the intermediate range order in phosphonium ionic liquids. J. Chem. Phys. 2014, 140, 111102.

[25]

Vaughan, J.; Dreisinger, D. Electrodeposition of aluminum from aluminum chloride-trihexyl(tetradecyl) phosphonium chloride. J. Electrochem. Soc. 2008, 155, D68–D72.

[26]

Schreiner, C.; Zugmann, S.; Hartl, R.; Gores, H. J. Fractional Walden rule for ionic liquids: Examples from recent measurements and a critique of the so-called ideal KCl line for the Walden plot. J. Chem. Eng. Data 2010, 55, 1784–1788.

[27]

Weber, C. C.; Masters, A. F.; Maschmeyer, T. Structural features of ionic liquids: Consequences for material preparation and organic reactivity. Green Chem. 2013, 15, 2655–2679.

[28]

Seitkalieva, M. M.; Samoylenko, D. E.; Lotsman, K. A.; Rodygin, K. S.; Ananikov, V. P. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coord. Chem. Rev. 2021, 445, 213982.

[29]

Zhang, P.; Wu, T. B.; Han, B. X. Preparation of catalytic materials using ionic liquids as the media and functional components. Adv. Mater. 2014, 26, 6810–6827.

[30]

Miyake, M.; Kubo, Y.; Hirato, T. Hull cell tests for evaluating the effects of polyethylene amines as brighteners in the electrodeposition of aluminum from dimethylsulfone-AlCl3 baths. Electrochim. Acta 2014, 120, 423–428.

[31]

Wang, Q.; Zhang, Q. Q.; Chen, B.; Lu, X. M.; Zhang, S. J. Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives. J. Electrochem. Soc. 2015, 162, D320–D324.

[32]
UedaM. (Invited) electroplating of bright aluminum on the ABS resin substrate covered with Cu film in EmImCl-AlCl3 ionic liquidECS Trans.20209824525110.1149/09810.0245ecst

Ueda, M. (Invited) electroplating of bright aluminum on the ABS resin substrate covered with Cu film in EmImCl-AlCl3 ionic liquid. ECS Trans. 2020, 98, 245–251.

[33]

Guinea, E.; Salicio-Paz, A.; Iriarte, A.; Grande, H. J.; Medina, E.; García-Lecina, E. Robust aluminum electrodeposition from ionic liquid electrolytes containing light aromatic naphta as additive. ChemistryOpen 2019, 8, 1094–1099.

[34]

Zhang, M.; Peng, D.; Peng, F. F.; Huang, A. W.; Song, K. Q.; He, Q. B.; Yin, C. Q.; Rao, J. S.; Zhang, Y. X.; Chen, H. T. et al. Effects of additives containing cyanopyridine on electrodeposition of bright Al coatings from AlCl3-EMIC ionic liquids. Coatings 2021, 11, 1396.

[35]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16 Revision A. 03; Gaussian, Inc.: Wallingford, 2016.
[36]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[37]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[38]

Lu, T.; Chen, Q. X. van der Waals potential: An important complement to molecular electrostatic potential in studying intermolecular interactions. J. Mol. Model. 2020, 26, 315.

[39]

Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.

[40]

Earle, M. J.; Gordon, C. M.; Plechkova, N. V.; Seddon, K. R.; Welton, T. Decolorization of ionic liquids for spectroscopy. Anal. Chem. 2007, 79, 758–764.

[41]

Burrell, A. K.; Del Sesto, R. E.; Baker, S. N.; McCleskey, T. M.; Baker, G. A. The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem. 2007, 9, 449–454.

[42]

Deferm, C.; van den Bossche, A.; Luyten, J.; Oosterhof, H.; Fransaer, J.; Binnemans, K. Thermal stability of trihexyl(tetradecyl)phosphonium chloride. Phys. Chem. Chem. Phys. 2018, 20, 2444–2456.

[43]

Maton, C.; de Vos, N.; Stevens, C. V. Ionic liquid thermal stabilities: Decomposition mechanisms and analysis tools. Chem. Soc. Rev. 2013, 42, 5963–5977.

[44]

Fraser, K. J.; Izgorodina, E. I.; Forsyth, M.; Scott, J. L.; MacFarlane, D. R. Liquids intermediate between “molecular” and “ionic” liquids: Liquid ion pairs? Chem. Commun. 2007, 3817–3819.

[45]

Zhang, Z. L.; Kitada, A.; Gao, S.; Fukami, K.; Tsuji, N.; Yao, Z. J.; Murase, K. A concentrated AlCl3–diglyme electrolyte for hard and corrosion-resistant aluminum electrodeposits. ACS Appl. Mater. Interfaces 2020, 12, 43289–43298.

[46]

Angell, M.; Pan, C. J.; Rong, Y. M.; Yuan, C. Z.; Lin, M. C.; Hwang, B. J.; Dai, H. J. High Coulombic efficiency aluminum-ion battery using an AlCl3–urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. USA 2017, 114, 834–839.

[47]

Sun, X. G.; Fang, Y. X.; Jiang, X. G.; Yoshii, K.; Tsuda, T.; Dai, S. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries. Chem. Commun. 2016, 52, 292–295.

[48]

Kore, R.; Kelley, S. P.; Sawant, A. D.; Mishra, M. K.; Rogers, R. D. Are ionic liquids and liquid coordination complexes really different?—Synthesis, characterization, and catalytic activity of AlCl3/base catalysts. Chem. Commun. 2020, 56, 5362–5365.

[49]

Ferrara, C.; Dall'Asta, V.; Berbenni, V.; Quartarone, E.; Mustarelli, P. Physicochemical characterization of AlCl3–1-ethyl-3-methylimidazolium chloride ionic liquid electrolytes for aluminum rechargeable batteries. J. Phys. Chem. C 2017, 121, 26607–26614.

[50]

Jin, C.; Chen, M. H.; Fan, M.; Luo, G. T.; Shao, M.; Huang, Z. J.; Xie, X. G. Hydrophobic phosphonium-based ionic liquids as novel extractants for palladium(II) recovery from alkaline cyanide solutions. J. Mol. Liq. 2021, 336, 116358.

[51]

Murray, J. S.; Politzer, P. The electrostatic potential: An overview. WIREs Comput. Mol. Sci. 2011, 1, 153–163.

[52]

Liu, X. H.; Li, S. Y.; Wang, D. X.; Ma, Y.; Liu, X. Y.; Ning, M. M. Theoretical study on the structure and cation–anion interaction of triethylammonium chloroaluminate ionic liquid. Comput. Theor. Chem. 2015, 1073, 67–74.

[53]

Politzer, P.; Murray, J. S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134–142.

[54]

Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. Properties of atoms in molecules: Atomic volumes. J. Am. Chem. Soc. 1987, 109, 7968–7979.

[55]

Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021, 23, 20323–20328.

[56]

Batsanov, S. S. Van der Waals radii of elements. Inorg. Mater. 2001, 37, 871–885.

[57]

Dhumal, N. R.; Kim, H. J.; Kiefer, J. Molecular interactions in 1-ethyl-3-methylimidazolium acetate Ion pair: A density functional study. J. Phys. Chem. A 2009, 113, 10397–10404.

[58]

Dhumal, N. R.; Noack, K.; Kiefer, J.; Kim, H. J. Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. A 2014, 118, 2547–2557.

[59]

Morco, R. P.; Musa, A. Y.; Wren, J. C. The molecular structures and the relationships between the calculated molecular and observed bulk phase properties of phosphonium-based ionic liquids. Solid State Ionics 2014, 258, 74–81.

[60]

Bonhôte, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1996, 35, 1168–1178.

[61]

Noack, K.; Schulz, P. S.; Paape, N.; Kiefer, J.; Wasserscheid, P.; Leipertz, A. The role of the C2 position in interionic interactions of imidazolium based ionic liquids: A vibrational and NMR spectroscopic study. Phys. Chem. Chem. Phys. 2010, 12, 14153–14161.

[62]

Liu, Y. C.; Yao, X. Q.; Yao, H. Y.; Zhou, Q.; Xin, J. Y.; Lu, X. M.; Zhang, S. J. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chem. 2020, 22, 3122–3131.

[63]

Wilkes, J. S.; Levisky, J. A.; Pflug, J. L.; Hussey, C. L.; Scheffler, T. B. Composition determinations of liquid chloroaluminate molten salts by nuclear magnetic resonance spectrometry. Anal. Chem. 1982, 54, 2378–2379.

[64]

Thomann, C. A.; Münzner, P.; Moch, K.; Jacquemin, J.; Goodrich, P.; Sokolov, A. P.; Böhmer, R.; Gainaru, C. Tuning the dynamics of imidazolium-based ionic liquids via hydrogen bonding. I. The viscous regime. J. Chem. Phys. 2020, 153, 194501.

[65]

Hayes, R.; Imberti, S.; Warr, G. G.; Atkin, R. The nature of hydrogen bonding in protic ionic liquids. Angew. Chem., Int. Ed. 2013, 52, 4623–4627.

[66]

Ng, K. L.; Lu, Z. L.; Wang, Y. J.; Singh, C. V.; Azimi, G. Fundamental insights into electrical and transport properties of chloroaluminate Ionic liquids for aluminum-ion batteries. J. Phys. Chem. C 2021, 125, 15145–15154.

[67]

Tsuda, T.; Stafford, G. R.; Hussey, C. L. Review-electrochemical surface finishing and energy storage technology with room-temperature haloaluminate ionic liquids and mixtures. J. Electrochem. Soc. 2017, 164, H5007–H5017.

[68]

Wang, Y. T.; Voth, G. A. Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 2005, 127, 12192–12193.

[69]

Hunt, P. A. Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2, 3-dimethyl-imidazolium-based ionic liquids? J. Phys. Chem. B 2007, 111, 4844–4853.

[70]

Philippi, F.; Rauber, D.; Kuttich, B.; Kraus, T.; Kay, C. W. M.; Hempelmann, R.; Hunt, P. A.; Welton, T. Ether functionalisation, ion conformation and the optimisation of macroscopic properties in ionic liquids. Phys. Chem. Chem. Phys. 2020, 22, 23038–23056.

[71]

Philippi, F.; Pugh, D.; Rauber, D.; Welton, T.; Hunt, P. A. Conformational design concepts for anions in ionic liquids. Chem. Sci. 2020, 11, 6405–6422.

[72]

Li, S.; Feng, G.; Bañuelos, J. L.; Rother, G.; Fulvio, P. F.; Dai, S.; Cummings, P. T. Distinctive nanoscale organization of dicationic versus monocationic ionic liquids. J. Phys. Chem. C 2013, 117, 18251–18257.

[73]

Borodin, O.; Smith, G. D. Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid from molecular dynamics simulations. J. Phys. Chem. B 2006, 110, 11481–11490.

[74]

Yamaguchi, T. Mode-coupling theoretical study on the roles of heterogeneous structure in rheology of ionic liquids. J. Chem. Phys. 2016, 144, 124514.

[75]

Amith, W. D.; Araque, J. C.; Margulis, C. J. A pictorial view of viscosity in ionic liquids and the link to nanostructural heterogeneity. J. Phys. Chem. Lett. 2020, 11, 2062–2066.

[76]

Yang, H. C.; Yin, L. C.; Liang, J.; Sun, Z. H.; Wang, Y. Z.; Li, H. C.; He, K.; Ma, L. P.; Peng, Z. Q.; Qiu, S. Y. et al. An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. 2018, 130, 1916–1920.

[77]

Zheng, Y.; Zheng, Y. J.; Wang, Q.; Wang, Z.; Tian, D. Y. Density and viscosity of binary mixtures of 1-ethyl-3-methylimidazolium heptachlorodialuminate and tetrachloroaluminate ionic liquids. J. Chem. Eng. Data 2017, 62, 4006–4014.

[78]

Zheng, Y.; Dong, K.; Wang, Q.; Zhang, J. M.; Lu, X. M. Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J. Chem. Eng. Data 2013, 58, 32–42.

[79]

Wang, Y. T.; Jiang, W.; Yan, T. Y.; Voth, G. A. Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. Acc. Chem. Res. 2007, 40, 1193–1199.

[80]

Hu, Z. H.; Margulis, C. J. Room-temperature ionic liquids: Slow dynamics, viscosity, and the red edge effect. Acc. Chem. Res. 2007, 40, 1097–1105.

[81]

Daly, R. P.; Araque, J. C.; Margulis, C. J. Communication: Stiff and soft nano-environments and the “Octopus Effect” are the crux of ionic liquid structural and dynamical heterogeneity. J. Chem. Phys. 2017, 147, 061102.

[82]

Gutel, T.; Santini, C. C.; Philippot, K.; Padua, A.; Pelzer, K.; Chaudret, B.; Chauvin, Y.; Basset, J. M. Organized 3D-alkyl imidazolium ionic liquids could be used to control the size of in situ generated rutheniumnanoparticles? J. Mater. Chem. 2009, 19, 3624–3631.

[83]

Gutel, T.; Garcia-Antõn, J.; Pelzer, K.; Philippot, K.; Santini, C. C.; Chauvin, Y.; Chaudret, B.; Basset, J. M. Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles: Effect of the temperature and stirring. J. Mater. Chem. 2007, 17, 3290–3292.

[84]

Miao, S. R.; Atkin, R.; Warr, G. G. Amphiphilic nanostructure in choline carboxylate and amino acid ionic liquids and solutions. Phys. Chem. Chem. Phys. 2020, 22, 3490–3498.

[85]

Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328.

[86]

Böttcher, R.; Ispas, A.; Bund, A. Anodic dissolution of aluminum and anodic passivation in [EMIm]Cl-based ionic liquids. Electrochem. Commun. 2020, 115, 106720.

[87]

Fendt, S.; Padmanabhan, S.; Blanch, H. W.; Prausnitz, J. M. Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. J. Chem. Eng. Data 2011, 56, 31–34.

[88]

Abbott, A. P.; Edler, K. J.; Page, A. J. Deep eutectic solvents—The vital link between ionic liquids and ionic solutions. J. Chem. Phys. 2021, 155, 150401.

[89]

Abbott, A. P.; Harris, R. C.; Hsieh, Y. T.; Ryder, K. S.; Sun, I. W. Aluminium electrodeposition under ambient conditions. Phys. Chem. Chem. Phys. 2014, 16, 14675–14681.

Nano Research
Pages 3348-3357
Cite this article:
Zhang Z, Kitada A, Fukami K, et al. Annealing, solvation, and mirror-plating effects in phosphonium chloroaluminate ionic liquids. Nano Research, 2023, 16(2): 3348-3357. https://doi.org/10.1007/s12274-022-4999-6
Topics:

783

Views

1

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 25 June 2022
Revised: 16 August 2022
Accepted: 02 September 2022
Published: 27 September 2022
© Tsinghua University Press 2022
Return