Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The physicochemical properties of a specific ionic liquid (IL) are naturally considered to be constant at a given temperature. However, a series of eutectic melts of trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14]Cl) with aluminum chloride (AlCl3) is an exception. The viscosity of Al2Cl7−-dominated [P6,6,6,14]Cl–AlCl3 ILs (i.e., AlCl3 mole fraction x = 0.60–0.67) gradually increased as a function of annealing. Annealing also influenced the ultraviolet–visible spectra, nuclear magnetic resonance spectra, and the glass transition temperature of the ILs. Such annealing-induced variations in physicochemical properties were not observed in the AlCl4−- and Cl−-dominated ILs. In particular, the ionic conductivities of the ILs (x = 0.60–0.67) were strongly decoupled from their viscosities during annealing. Ab initio calculations revealed the bending of the long tetradecyl chains in [P6,6,6,14]+ coupled with Al2Cl7−, while neither Cl− nor AlCl4− caused bending. In general, [P6,6,6,14]+-based ILs are recognized as sponge-like structures that consist of nano-scale polar and non-polar domains. We propose a gradual structurization process in Al2Cl7−-dominated ILs to account for their unusual physicochemical properties. Moreover, the addition of tetradecane, solvated in the non-polar domains of the ILs, substantially reduced the viscosity of the structured IL with x = 0.67. Mirror Al electroplating is possible without a brightener, using the x = 0.67 ILs, regardless of annealing or the admixture of tetradecane.
Plechkova, N. V.; Seddon, K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150.
Greer, A. J.; Jacquemin, J.; Hardacre, C. Industrial applications of ionic liquids. Molecules 2020, 25, 5207.
Wasserscheid, P.; Keim, W. Ionic liquids—New “solutions” for transition metal catalysis. Angew. Chem., Int. Ed. 2000, 39, 3772–3789.
Fumino, K.; Fossog, V.; Stange, P.; Paschek, D.; Hempelmann, R.; Ludwig, R. Controlling the subtle energy balance in protic ionic liquids: Dispersion forces compete with hydrogen bonds. Angew. Chem., Int. Ed. 2015, 54, 2792–2795.
Hunt, P. A.; Ashworth, C. R.; Matthews, R. P. Hydrogen bonding in ionic liquids. Chem. Soc. Rev. 2015, 44, 1257–1288.
Dong, K.; Zhang, S. J.; Wang, J. J. Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem. Commun. 2016, 52, 6744–6764.
Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 2009, 8, 621–629.
Hayes, R.; Warr, G. G.; Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 2015, 115, 6357–6426.
Wang, Y. L.; Li, B.; Sarman, S.; Mocci, F.; Lu, Z. Y.; Yuan, J. Y.; Laaksonen, A.; Fayer, M. D. Microstructural and dynamical heterogeneities in ionic liquids. Chem. Rev. 2020, 120, 5798–5877.
Zhang, S. G.; Zhang, J. H.; Zhang, Y.; Deng, Y. Q. Nanoconfined ionic liquids. Chem. Rev. 2017, 117, 6755–6833.
Dong, K.; Liu, X. M.; Dong, H. F.; Zhang, X. P.; Zhang, S. J. Multiscale studies on ionic liquids. Chem. Rev. 2017, 117, 6636–6695.
Triolo, A.; Russina, O.; Fazio, B.; Triolo, R.; Di Cola, E. Morphology of 1-alkyl-3-methylimidazolium hexafluorophosphate room temperature ionic liquids. Chem. Phys. Lett. 2008, 457, 362–365.
Lopes, J. N. A. C.; Pádua, A. A. H. Nanostructural organization in ionic liquids. J. Phys. Chem. B 2006, 110, 3330–3335.
Wang, Y. L.; Li, B.; Sarman, S.; Laaksonen, A. Microstructures and dynamics of tetraalkylphosphonium chloride ionic liquids. J. Chem. Phys. 2017, 147, 224502.
Kashyap, H. K.; Santos, C. S.; Murthy, N. S.; Hettige, J. J.; Kerr, K.; Ramati, S.; Gwon, J.; Gohdo, M.; Lall-Ramnarine, S. I.; Wishart, J. F. et al. Structure of 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide ionic liquids with linear, branched, and cyclic alkyl groups. J. Phys. Chem. B 2013, 117, 15328–15337.
Nemoto, F.; Kofu, M.; Yamamuro, O. Thermal and structural studies of imidazolium-based ionic liquids with and without liquid-crystalline phases: The origin of nanostructure. J. Phys. Chem. B 2015, 119, 5028–5034.
Triolo, A.; Russina, O.; Bleif, H. J.; Di Cola, E. Nanoscale segregation in room temperature ionic liquids. J. Phys. Chem. B 2007, 111, 4641–4644.
Santos, C. S.; Murthy, N. S.; Baker, G. A.; Castner, E. W. Jr. Communication: X-ray scattering from ionic liquids with pyrrolidinium cations. J. Chem. Phys. 2011, 134, 121101.
Wang, Y. T. Disordering and reordering of ionic liquids under an external electric field. J. Phys. Chem. B 2009, 113, 11058–11060.
Dhungana, K. B.; Margulis, C. J. Comparison of the structural response to pressure of ionic liquids with ether and alkyl functionalities. J. Phys. Chem. B 2017, 121, 6890–6897.
Takekiyo, T.; Koyama, Y.; Shigemi, M.; Matsuishi, K.; Abe, H.; Hamaya, N.; Yoshimura, Y. Conformational adjustment for high-pressure glass formation of 1-alkyl-3-methylimidazolium tetrafluoroborate. Phys. Chem. Chem. Phys. 2017, 19, 863–870.
Hettige, J. J.; Araque, J. C.; Kashyap, H. K.; Margulis, C. J. Communication: Nanoscale structure of tetradecyltrihexylphosphonium based ionic liquids. J. Chem. Phys. 2016, 144, 121102.
Kashyap, H. K.; Santos, C. S.; Annapureddy, H. V. R.; Murthy, N. S.; Margulis, C. J.; Castner, E. W. Jr. Temperature-dependent structure of ionic liquids: X-ray scattering and simulations. Faraday Discuss. 2012, 154, 133–143.
Hettige, J. J.; Kashyap, H. K.; Margulis, C. J. Communication: Anomalous temperature dependence of the intermediate range order in phosphonium ionic liquids. J. Chem. Phys. 2014, 140, 111102.
Vaughan, J.; Dreisinger, D. Electrodeposition of aluminum from aluminum chloride-trihexyl(tetradecyl) phosphonium chloride. J. Electrochem. Soc. 2008, 155, D68–D72.
Schreiner, C.; Zugmann, S.; Hartl, R.; Gores, H. J. Fractional Walden rule for ionic liquids: Examples from recent measurements and a critique of the so-called ideal KCl line for the Walden plot. J. Chem. Eng. Data 2010, 55, 1784–1788.
Weber, C. C.; Masters, A. F.; Maschmeyer, T. Structural features of ionic liquids: Consequences for material preparation and organic reactivity. Green Chem. 2013, 15, 2655–2679.
Seitkalieva, M. M.; Samoylenko, D. E.; Lotsman, K. A.; Rodygin, K. S.; Ananikov, V. P. Metal nanoparticles in ionic liquids: Synthesis and catalytic applications. Coord. Chem. Rev. 2021, 445, 213982.
Zhang, P.; Wu, T. B.; Han, B. X. Preparation of catalytic materials using ionic liquids as the media and functional components. Adv. Mater. 2014, 26, 6810–6827.
Miyake, M.; Kubo, Y.; Hirato, T. Hull cell tests for evaluating the effects of polyethylene amines as brighteners in the electrodeposition of aluminum from dimethylsulfone-AlCl3 baths. Electrochim. Acta 2014, 120, 423–428.
Wang, Q.; Zhang, Q. Q.; Chen, B.; Lu, X. M.; Zhang, S. J. Electrodeposition of bright Al coatings from 1-butyl-3-methylimidazolium chloroaluminate ionic liquids with specific additives. J. Electrochem. Soc. 2015, 162, D320–D324.
Ueda, M. (
Guinea, E.; Salicio-Paz, A.; Iriarte, A.; Grande, H. J.; Medina, E.; García-Lecina, E. Robust aluminum electrodeposition from ionic liquid electrolytes containing light aromatic naphta as additive. ChemistryOpen 2019, 8, 1094–1099.
Zhang, M.; Peng, D.; Peng, F. F.; Huang, A. W.; Song, K. Q.; He, Q. B.; Yin, C. Q.; Rao, J. S.; Zhang, Y. X.; Chen, H. T. et al. Effects of additives containing cyanopyridine on electrodeposition of bright Al coatings from AlCl3-EMIC ionic liquids. Coatings 2021, 11, 1396.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
Lu, T.; Chen, Q. X. van der Waals potential: An important complement to molecular electrostatic potential in studying intermolecular interactions. J. Mol. Model. 2020, 26, 315.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.
Earle, M. J.; Gordon, C. M.; Plechkova, N. V.; Seddon, K. R.; Welton, T. Decolorization of ionic liquids for spectroscopy. Anal. Chem. 2007, 79, 758–764.
Burrell, A. K.; Del Sesto, R. E.; Baker, S. N.; McCleskey, T. M.; Baker, G. A. The large scale synthesis of pure imidazolium and pyrrolidinium ionic liquids. Green Chem. 2007, 9, 449–454.
Deferm, C.; van den Bossche, A.; Luyten, J.; Oosterhof, H.; Fransaer, J.; Binnemans, K. Thermal stability of trihexyl(tetradecyl)phosphonium chloride. Phys. Chem. Chem. Phys. 2018, 20, 2444–2456.
Maton, C.; de Vos, N.; Stevens, C. V. Ionic liquid thermal stabilities: Decomposition mechanisms and analysis tools. Chem. Soc. Rev. 2013, 42, 5963–5977.
Fraser, K. J.; Izgorodina, E. I.; Forsyth, M.; Scott, J. L.; MacFarlane, D. R. Liquids intermediate between “molecular” and “ionic” liquids: Liquid ion pairs? Chem. Commun. 2007, 3817–3819.
Zhang, Z. L.; Kitada, A.; Gao, S.; Fukami, K.; Tsuji, N.; Yao, Z. J.; Murase, K. A concentrated AlCl3–diglyme electrolyte for hard and corrosion-resistant aluminum electrodeposits. ACS Appl. Mater. Interfaces 2020, 12, 43289–43298.
Angell, M.; Pan, C. J.; Rong, Y. M.; Yuan, C. Z.; Lin, M. C.; Hwang, B. J.; Dai, H. J. High Coulombic efficiency aluminum-ion battery using an AlCl3–urea ionic liquid analog electrolyte. Proc. Natl. Acad. Sci. USA 2017, 114, 834–839.
Sun, X. G.; Fang, Y. X.; Jiang, X. G.; Yoshii, K.; Tsuda, T.; Dai, S. Polymer gel electrolytes for application in aluminum deposition and rechargeable aluminum ion batteries. Chem. Commun. 2016, 52, 292–295.
Kore, R.; Kelley, S. P.; Sawant, A. D.; Mishra, M. K.; Rogers, R. D. Are ionic liquids and liquid coordination complexes really different?—Synthesis, characterization, and catalytic activity of AlCl3/base catalysts. Chem. Commun. 2020, 56, 5362–5365.
Ferrara, C.; Dall'Asta, V.; Berbenni, V.; Quartarone, E.; Mustarelli, P. Physicochemical characterization of AlCl3–1-ethyl-3-methylimidazolium chloride ionic liquid electrolytes for aluminum rechargeable batteries. J. Phys. Chem. C 2017, 121, 26607–26614.
Jin, C.; Chen, M. H.; Fan, M.; Luo, G. T.; Shao, M.; Huang, Z. J.; Xie, X. G. Hydrophobic phosphonium-based ionic liquids as novel extractants for palladium(II) recovery from alkaline cyanide solutions. J. Mol. Liq. 2021, 336, 116358.
Murray, J. S.; Politzer, P. The electrostatic potential: An overview. WIREs Comput. Mol. Sci. 2011, 1, 153–163.
Liu, X. H.; Li, S. Y.; Wang, D. X.; Ma, Y.; Liu, X. Y.; Ning, M. M. Theoretical study on the structure and cation–anion interaction of triethylammonium chloroaluminate ionic liquid. Comput. Theor. Chem. 2015, 1073, 67–74.
Politzer, P.; Murray, J. S. The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 2002, 108, 134–142.
Bader, R. F. W.; Carroll, M. T.; Cheeseman, J. R.; Chang, C. Properties of atoms in molecules: Atomic volumes. J. Am. Chem. Soc. 1987, 109, 7968–7979.
Zhang, J.; Lu, T. Efficient evaluation of electrostatic potential with computerized optimized code. Phys. Chem. Chem. Phys. 2021, 23, 20323–20328.
Batsanov, S. S. Van der Waals radii of elements. Inorg. Mater. 2001, 37, 871–885.
Dhumal, N. R.; Kim, H. J.; Kiefer, J. Molecular interactions in 1-ethyl-3-methylimidazolium acetate Ion pair: A density functional study. J. Phys. Chem. A 2009, 113, 10397–10404.
Dhumal, N. R.; Noack, K.; Kiefer, J.; Kim, H. J. Molecular structure and interactions in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. A 2014, 118, 2547–2557.
Morco, R. P.; Musa, A. Y.; Wren, J. C. The molecular structures and the relationships between the calculated molecular and observed bulk phase properties of phosphonium-based ionic liquids. Solid State Ionics 2014, 258, 74–81.
Bonhôte, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 1996, 35, 1168–1178.
Noack, K.; Schulz, P. S.; Paape, N.; Kiefer, J.; Wasserscheid, P.; Leipertz, A. The role of the C2 position in interionic interactions of imidazolium based ionic liquids: A vibrational and NMR spectroscopic study. Phys. Chem. Chem. Phys. 2010, 12, 14153–14161.
Liu, Y. C.; Yao, X. Q.; Yao, H. Y.; Zhou, Q.; Xin, J. Y.; Lu, X. M.; Zhang, S. J. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chem. 2020, 22, 3122–3131.
Wilkes, J. S.; Levisky, J. A.; Pflug, J. L.; Hussey, C. L.; Scheffler, T. B. Composition determinations of liquid chloroaluminate molten salts by nuclear magnetic resonance spectrometry. Anal. Chem. 1982, 54, 2378–2379.
Thomann, C. A.; Münzner, P.; Moch, K.; Jacquemin, J.; Goodrich, P.; Sokolov, A. P.; Böhmer, R.; Gainaru, C. Tuning the dynamics of imidazolium-based ionic liquids via hydrogen bonding. I. The viscous regime. J. Chem. Phys. 2020, 153, 194501.
Hayes, R.; Imberti, S.; Warr, G. G.; Atkin, R. The nature of hydrogen bonding in protic ionic liquids. Angew. Chem., Int. Ed. 2013, 52, 4623–4627.
Ng, K. L.; Lu, Z. L.; Wang, Y. J.; Singh, C. V.; Azimi, G. Fundamental insights into electrical and transport properties of chloroaluminate Ionic liquids for aluminum-ion batteries. J. Phys. Chem. C 2021, 125, 15145–15154.
Tsuda, T.; Stafford, G. R.; Hussey, C. L. Review-electrochemical surface finishing and energy storage technology with room-temperature haloaluminate ionic liquids and mixtures. J. Electrochem. Soc. 2017, 164, H5007–H5017.
Wang, Y. T.; Voth, G. A. Unique spatial heterogeneity in ionic liquids. J. Am. Chem. Soc. 2005, 127, 12192–12193.
Hunt, P. A. Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2, 3-dimethyl-imidazolium-based ionic liquids? J. Phys. Chem. B 2007, 111, 4844–4853.
Philippi, F.; Rauber, D.; Kuttich, B.; Kraus, T.; Kay, C. W. M.; Hempelmann, R.; Hunt, P. A.; Welton, T. Ether functionalisation, ion conformation and the optimisation of macroscopic properties in ionic liquids. Phys. Chem. Chem. Phys. 2020, 22, 23038–23056.
Philippi, F.; Pugh, D.; Rauber, D.; Welton, T.; Hunt, P. A. Conformational design concepts for anions in ionic liquids. Chem. Sci. 2020, 11, 6405–6422.
Li, S.; Feng, G.; Bañuelos, J. L.; Rother, G.; Fulvio, P. F.; Dai, S.; Cummings, P. T. Distinctive nanoscale organization of dicationic versus monocationic ionic liquids. J. Phys. Chem. C 2013, 117, 18251–18257.
Borodin, O.; Smith, G. D. Structure and dynamics of N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid from molecular dynamics simulations. J. Phys. Chem. B 2006, 110, 11481–11490.
Yamaguchi, T. Mode-coupling theoretical study on the roles of heterogeneous structure in rheology of ionic liquids. J. Chem. Phys. 2016, 144, 124514.
Amith, W. D.; Araque, J. C.; Margulis, C. J. A pictorial view of viscosity in ionic liquids and the link to nanostructural heterogeneity. J. Phys. Chem. Lett. 2020, 11, 2062–2066.
Yang, H. C.; Yin, L. C.; Liang, J.; Sun, Z. H.; Wang, Y. Z.; Li, H. C.; He, K.; Ma, L. P.; Peng, Z. Q.; Qiu, S. Y. et al. An aluminum-sulfur battery with a fast kinetic response. Angew. Chem. 2018, 130, 1916–1920.
Zheng, Y.; Zheng, Y. J.; Wang, Q.; Wang, Z.; Tian, D. Y. Density and viscosity of binary mixtures of 1-ethyl-3-methylimidazolium heptachlorodialuminate and tetrachloroaluminate ionic liquids. J. Chem. Eng. Data 2017, 62, 4006–4014.
Zheng, Y.; Dong, K.; Wang, Q.; Zhang, J. M.; Lu, X. M. Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J. Chem. Eng. Data 2013, 58, 32–42.
Wang, Y. T.; Jiang, W.; Yan, T. Y.; Voth, G. A. Understanding ionic liquids through atomistic and coarse-grained molecular dynamics simulations. Acc. Chem. Res. 2007, 40, 1193–1199.
Hu, Z. H.; Margulis, C. J. Room-temperature ionic liquids: Slow dynamics, viscosity, and the red edge effect. Acc. Chem. Res. 2007, 40, 1097–1105.
Daly, R. P.; Araque, J. C.; Margulis, C. J. Communication: Stiff and soft nano-environments and the “Octopus Effect” are the crux of ionic liquid structural and dynamical heterogeneity. J. Chem. Phys. 2017, 147, 061102.
Gutel, T.; Santini, C. C.; Philippot, K.; Padua, A.; Pelzer, K.; Chaudret, B.; Chauvin, Y.; Basset, J. M. Organized 3D-alkyl imidazolium ionic liquids could be used to control the size of in situ generated rutheniumnanoparticles? J. Mater. Chem. 2009, 19, 3624–3631.
Gutel, T.; Garcia-Antõn, J.; Pelzer, K.; Philippot, K.; Santini, C. C.; Chauvin, Y.; Chaudret, B.; Basset, J. M. Influence of the self-organization of ionic liquids on the size of ruthenium nanoparticles: Effect of the temperature and stirring. J. Mater. Chem. 2007, 17, 3290–3292.
Miao, S. R.; Atkin, R.; Warr, G. G. Amphiphilic nanostructure in choline carboxylate and amino acid ionic liquids and solutions. Phys. Chem. Chem. Phys. 2020, 22, 3490–3498.
Lin, M. C.; Gong, M.; Lu, B. G.; Wu, Y. P.; Wang, D. Y.; Guan, M. Y.; Angell, M.; Chen, C. X.; Yang, J.; Hwang, B. J. et al. An ultrafast rechargeable aluminium-ion battery. Nature 2015, 520, 324–328.
Böttcher, R.; Ispas, A.; Bund, A. Anodic dissolution of aluminum and anodic passivation in [EMIm]Cl-based ionic liquids. Electrochem. Commun. 2020, 115, 106720.
Fendt, S.; Padmanabhan, S.; Blanch, H. W.; Prausnitz, J. M. Viscosities of acetate or chloride-based ionic liquids and some of their mixtures with water or other common solvents. J. Chem. Eng. Data 2011, 56, 31–34.
Abbott, A. P.; Edler, K. J.; Page, A. J. Deep eutectic solvents—The vital link between ionic liquids and ionic solutions. J. Chem. Phys. 2021, 155, 150401.
Abbott, A. P.; Harris, R. C.; Hsieh, Y. T.; Ryder, K. S.; Sun, I. W. Aluminium electrodeposition under ambient conditions. Phys. Chem. Chem. Phys. 2014, 16, 14675–14681.