AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Understanding voltage hysteresis and decay during anionic redox reaction in layered transition metal oxide cathodes: A critical review

Wei ZhengGemeng Liang( )Shilin ZhangKenneth DaveyZaiping Guo( )
School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
Show Author Information

Graphical Abstract

Underlying mechanisms for voltage hysteresis and decay during anionic redox reactions in layered transition metal oxide cathodes have been summarized in detail from aspects of transition metal and oxygen evolution. Efficient modification methods to solve voltage hysteresis and decay are also systematically reviewed alongside the future research directions.

Abstract

The emergence of anionic redox reactions in layered transition metal oxide cathodes provides practical opportunity to boost the energy density of rechargeable batteries. However, the activation of anionic redox reaction in layered oxides has significant voltage hysteresis and decay that reduce battery performance and limit commercialization. Here, we critically review the up-to-date development of anionic redox reaction in layered oxide cathodes, summarize the proposed reaction mechanism, and unveil their connection to voltage hysteresis and decay based on the state-of-the-art progress. In addition, advances associated with various modification approaches to mitigate the voltage hysteresis/decay in layered transition metal oxide cathodes are also included. Finally, we conclude with an appraisal of further research directions including rational design of high-performance layered oxide cathodes with reversible anionic redox reactions and suppressed voltage hysteresis/decay. Findings will be of immediate benefit to the development of layered oxide cathodes for high performance rechargeable batteries.

References

[1]

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

[2]

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

[3]

Zhang, W. C.; Lu, J.; Guo, Z. P. Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Mater. Today 2021, 50, 400–417.

[4]

Han, M. H.; Gonzalo, E.; Singh, G.; Rojo, T. A comprehensive review of sodium layered oxides: Powerful cathodes for Na-ion batteries. Energy Environ. Sci. 2015, 8, 81–102.

[5]

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

[6]

Nie, P.; Shen, L. F.; Luo, H. F.; Ding, B.; Xu, G. Y.; Wang, J.; Zhang, X. G. Prussian blue analogues: A new class of anode materials for lithium ion batteries. J. Mater. Chem. A 2014, 2, 5852–5857.

[7]

Xu, Y.; Zhou, M.; Lei, Y. Organic materials for rechargeable sodium-ion batteries. Mater. Today 2018, 21, 60–78.

[8]

Guo, S. P.; Li, J. C.; Xu, Q. T.; Ma, Z.; Xue, H. G. Recent achievements on polyanion-type compounds for sodium-ion batteries: Syntheses, crystal chemistry and electrochemical performance. J. Power Sources 2017, 361, 285–299.

[9]

Liang, G. M.; Peterson, V. K.; See, K. W.; Guo, Z. P.; Pang, W. K. Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: Current achievements and future prospects. J. Mater. Chem. A 2020, 8, 15373–15398.

[10]

Liang, G. M.; Peterson, V. K.; Wu, Z. B.; Zhang, S. L.; Hao, J. N.; Lu, C. Z.; Chuang, C. H.; Lee, J. F.; Liu, J.; Leniec, G. et al. Crystallographic-site-specific structural engineering enables extraordinary electrochemical performance of high-voltage LiNi0.5Mn1.5O4 spinel cathodes for lithium-ion batteries. Adv. Mater. 2021, 33, 2101413.

[11]

Liang, G. M.; Wu, Z. B.; Didier, C.; Zhang, W. C.; Cuan, J.; Li, B. H.; Ko, K. Y.; Hung, P. Y.; Lu, C. Z.; Chen, Y. Z. et al. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew. Chem., Int. Ed. 2020, 59, 10594–10602.

[12]

Lyu, Y.; Wu, X.; Wang, K.; Feng, Z. J.; Cheng, T.; Liu, Y.; Wang, M.; Chen, R. M.; Xu, L. M.; Zhou, J. J. et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2000982.

[13]

Yang, H. P.; Wu, H. H.; Ge, M. Y.; Li, L. J.; Yuan, Y. F.; Yao, Q.; Chen, J.; Xia, L. F.; Zheng, J. M.; Chen, Z. Y. et al. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808825.

[14]

Li, L. J.; Fu, L. Z.; Li, M.; Wang, C.; Zhao, Z. X.; Xie, S. C.; Lin, H. C.; Wu, X. W.; Liu, H. D.; Zhang, L. et al. B-doped and La4NiLiO8-coated Ni-rich cathode with enhanced structural and interfacial stability for lithium-ion batteries. J. Energy Chem. 2022, 71, 588–594.

[15]

Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.

[16]

Xu, H.; Guo, S. H.; Zhou, H. S. Review on anionic redox in sodium-ion batteries. J. Mater. Chem. A 2019, 7, 23662–23678.

[17]

Fan, Y. M.; Zhang, W. C.; Zhao, Y. L.; Guo, Z. P.; Cai, Q. Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure. Energy Storage Mater. 2021, 40, 51–71.

[18]

Hu, E. Y.; Li, Q. H.; Wang, X. L.; Meng, F. Q.; Liu, J.; Zhang, J. N.; Page, K.; Xu, W. Q.; Gu, L.; Xiao, R. J. et al. Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge–discharge. Joule 2021, 5, 720–736.

[19]

Assat, G.; Foix, D.; Delacourt, C.; Iadecola, A.; Dedryvère, R.; Tarascon, J. M. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 2017, 8, 2219.

[20]

Rong, X. H.; Hu, E. Y.; Lu, Y. X; Meng, F. Q.; Zhao, C. L.; Wang, X. L.; Zhang, Q. H.; Yu, X. Q.; Gu, L.; Hu, Y. S. et al. Anionic redox reaction-induced high-capacity and low-strain cathode with suppressed phase transition. Joule 2019, 3, 503–517.

[21]

Hu, S. J.; Pillai, A. S.; Liang, G. M.; Pang, W. K.; Wang, H. Q.; Li, Q. Y.; Guo, Z. P. Li-rich layered oxides and their practical challenges: Recent progress and perspectives. Electrochem. Energy Rev. 2019, 2, 277–311.

[22]

Liu, Q.; Zheng, W.; Lu, Z. G.; Zhang, X.; Wan, K.; Luo, J. S.; Fransaer, J. The decay mechanism related to structural and morphological evolution in lithium-rich cathode materials for lithium-ion batteries. ChemSusChem 2020, 13, 3237–3242.

[23]

House, R. A.; Marie, J. J.; Pérez-Osorio, M. A.; Rees, G. J.; Boivin, E.; Bruce, P. G. The role of O2 in O-redox cathodes for Li-ion batteries. Nat. Energy 2021, 6, 781–789.

[24]

Shen, Q. Y.; Liu, Y. C.; Jiao, L. F.; Qu, X. H.; Chen, J. Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries. Energy Storage Mater. 2021, 35, 400–430.

[25]

Zhang, M. H.; Kitchaev, D. A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P. J.; Grey, C. P.; Whittingham, M. S.; Piper, L. F. J.; van der Ven, A. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540.

[26]

Zhao, S. Q.; Yan, K.; Zhang, J. Q.; Sun, B.; Wang, G. X. Reaction mechanisms of layered lithium-rich cathode materials for high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2208–2220.

[27]

Rahman, M. M.; Lin, F. Oxygen redox chemistry in rechargeable Li-ion and Na-ion batteries. Matter 2021, 4, 490–527.

[28]

Li, X.; Qiao, Y.; Guo, S. H.; Xu, Z. M.; Zhu, H.; Zhang, X. Y.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. S. Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 2018, 30, 1705197.

[29]

McCalla, E.; Abakumov, A. M.; Saubanère, M.; Foix, D.; Berg, E. J.; Rousse, G.; Doublet, M. L.; Gonbeau, D.; Novák, P.; Van Tendeloo, G. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 2015, 350, 1516–1521.

[30]

Zuo, W. H.; Luo, M. Z.; Liu, X. S.; Wu, J.; Liu, H. D.; Li, J.; Winter, M.; Fu, R. Q.; Yang, W. L.; Yang, Y. Li-rich cathodes for rechargeable Li-based batteries: Reaction mechanisms and advanced characterization techniques. Energy Environ. Sci. 2020, 13, 4450–4497.

[31]

Ren, H. X.; Li, Y.; Ni, Q.; Bai, Y.; Zhao, H. C.; Wu, C. Unraveling anionic redox for sodium layered oxide cathodes: Breakthroughs and perspectives. Adv. Mater. 2022, 34, 2106171.

[32]

Rossouw, M. H.; Thackeray, M. M. Lithium manganese oxides from Li2MnO3 for rechargeable lithium battery applications. Mater. Res. Bull. 1991, 26, 463–473.

[33]

Tarascon, J. M.; Vaughan, G.; Chabre, Y.; Seguin, L.; Anne, M.; Strobel, P.; Amatucci, G. In situ structural and electrochemical study of Ni1−xCoxO2 metastable oxides prepared by soft chemistry. J. Solid State Chem. 1999, 147, 420.

[34]

Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 2001, 4, A191.

[35]

Sathiya, M.; Ramesha, K.; Rousse, G.; Foix, D.; Gonbeau, D.; Prakash, A. S.; Doublet, M. L.; Hemalatha, K.; Tarascon, J. M. High performance Li2Ru1−yMnyO3 (0.2 < y < 0.8) cathode materials for rechargeable lithium-ion batteries:Their understanding. Chem. Mater. 2013, 25, 1121–1131.

[36]

Knight, J. C.; Nandakumar, P.; Kan, W. H.; Manthiram, A. Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides. J. Mater. Chem. A 2015, 3, 2006–2011.

[37]

Hong, J.; Seo, D. H.; Kim, S. W.; Gwon, H.; Oh, S. T.; Kang, K. Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. J. Mater. Chem. 2010, 20, 10179–10186.

[38]

Li, X.; Zhang, K. J.; Mitlin, D.; Paek, E.; Wang, M. S.; Jiang, F.; Huang, Y.; Yang, Z. Z.; Gong, Y.; Gu, L. et al. Li-rich Li[Li1/6Fe1/6Ni1/6Mn1/2]O2 (LFNMO) cathodes: Atomic scale insight on the mechanisms of cycling decay and of the improvement due to cobalt phosphate surface modification. Small 2018, 14, 1802570.

[39]

Mortemard de Boisse, B.; Liu, G. D.; Ma, J. T.; Nishimura, S. I.; Chung, S. C.; Kiuchi, H.; Harada, Y.; Kikkawa, J.; Kobayashi, Y.; Okubo, M. et al. Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nat. Commun. 2016, 7, 11397.

[40]

Du, K.; Zhu, J. Y.; Hu, G. R.; Gao, H. C.; Li, Y. T.; Goodenough, J. B. Exploring reversible oxidation of oxygen in a manganese oxide. Energy Environ. Sci. 2016, 9, 2575–2577.

[41]

Rong, X. H.; Liu, J.; Hu, E. Y.; Liu, Y. J.; Wang, Y.; Wu, J. P.; Yu, X. Q.; Page, K.; Hu, Y. S.; Yang, W. L. et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule 2018, 2, 125–140.

[42]

Maitra, U.; House, R. A.; Somerville, J. W.; Tapia-Ruiz, N.; Lozano, J. G.; Guerrini, N.; Hao, R.; Luo, K.; Jin, L. Y.; Pérez-Osorio, M. A. et al. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nat. Chem. 2018, 10, 288–295.

[43]

Zheng, W.; Liu, Q.; Wang, Z. Y.; Yi, Z. B.; Li, Y. Z.; Cao, L. J.; Zhang, K. L.; Lu, Z. G. Stabilizing the oxygen lattice and reversible oxygen redox in Na-deficient cathode oxides. J. Power Sources 2019, 439, 227086.

[44]

Zheng, W.; Liu, Q.; Wang, Z. Y.; Wu, Z. L.; Gu, S.; Cao, L. J.; Zhang, K. L.; Fransaer, J.; Lu, Z. G. Oxygen redox activity with small voltage hysteresis in Na0.67Cu0.28Mn0.72O2 for sodium-ion batteries. Energy Storage Mater. 2020, 28, 300–306.

[45]

Qiao, Y.; Guo, S. H.; Zhu, K.; Liu, P.; Li, X.; Jiang, K. Z.; Sun, C. J.; Chen, M. W.; Zhou, H. S. Reversible anionic redox activity in Na3RuO4 cathodes: A prototype Na-rich layered oxide. Energy Environ. Sci. 2018, 11, 299–305.

[46]

Lu, Z. H.; Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 2002, 149, A815–A822.

[47]

Armstrong, A. R.; Bruce, P. G. Electrochemistry beyond Mn4+ in LixMn1−yLiyO2. Electrochem. Solid-State Lett. 2003, 7, A1–A4.

[48]

Robertson, A. D.; Bruce, P. G. The origin of electrochemical activity in Li2MnO3. Chem. Commun. 2002, 34, 2790–2791.

[49]

Tran, N.; Croguennec, L.; Ménétrier, M.; Weill, F.; Biensan, P.; Jordy, C.; Delmas, C. Mechanisms associated with the “plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0. 88O2 system. Chem. Mater. 2008, 20, 4815–4825.

[50]

Shin, Y.; Manthiram, A. Origin of the high voltage (> 4.5 V) capacity of spinel lithium manganese oxides. Electrochim. Acta 2003, 48, 3583–3592.

[51]

Zuba, M. J.; Grenier, A.; Lebens-Higgins, Z.; Fajardo, G. J. P.; Li, Y. X.; Ha, Y.; Zhou, H.; Whittingham, M. S.; Yang, W. L.; Meng, Y. S. et al. Whither Mn oxidation in Mn-rich alkali-excess cathodes? ACS Energy Lett. 2021, 6, 1055–1064.

[52]

Armstrong, A. R.; Holzapfel, M.; Novák, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 2006, 128, 8694–8698.

[53]

Muhammad, S.; Kim, H.; Kim, Y.; Kim, D.; Song, J. H.; Yoon, J.; Park, J. H.; Ahn, S. J.; Kang, S. H.; Thackeray, M. M. et al. Evidence of reversible oxygen participation in anomalously high capacity Li- and Mn-rich cathodes for Li-ion batteries. Nano Energy 2016, 21, 172–184.

[54]

Yabuuchi, N.; Yoshii, K.; Myung, S. T.; Nakai, I.; Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 2011, 133, 4404–4419.

[55]

Koga, H.; Croguennec, L.; Ménétrier, M.; Mannessiez, P.; Weill, F.; Delmas, C. Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54CO0.13Ni0.13O2. J. Power Sources 2013, 236, 250–258.

[56]

Foix, D.; Sathiya, M.; McCalla, E.; Tarascon, J. M.; Gonbeau, D. X-ray photoemission spectroscopy study of cationic and anionic redox processes in high-capacity Li-ion battery layered-oxide electrodes. J. Phys. Chem. C 2016, 120, 862–874.

[57]

Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M. L.; Foix, D.; Gonbeau, D.; Walker, W. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 2013, 12, 827–835.

[58]

Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edström, K.; Guo, J. H.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684–691.

[59]

Luo, K.; Roberts, M. R.; Guerrini, N.; Tapia-Ruiz, N.; Hao, R.; Massel, F.; Pickup, D. M.; Ramos, S.; Liu, Y. S.; Guo, J. H. et al. Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. J. Am. Chem. Soc. 2016, 138, 11211–11218.

[60]

Seo, D. H.; Lee, J.; Urban, A.; Malik, R.; Kang, S. Y.; Ceder, G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 2016, 8, 692–697.

[61]

Ben Yahia, M.; Vergnet, J.; Saubanère, M.; Doublet, M. L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 2019, 18, 496–502.

[62]

Hong, J.; Gent, W. E.; Xiao, P. H.; Lim, K.; Seo, D. H.; Wu, J. P.; Csernica, P. M.; Takacs, C. J.; Nordlund, D.; Sun, C. J. et al. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 2019, 18, 256–265.

[63]

House, R. A.; Maitra, U.; Pérez-Osorio, M. A.; Lozano, J. G.; Jin, L. Y.; Somerville, J. W.; Duda, L. C.; Nag, A.; Walters, A.; Zhou, K. J. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 2020, 577, 502–508.

[64]

House, R. A.; Rees, G. J.; Pérez-Osorio, M. A.; Marie, J. J.; Boivin, E.; Robertson, A. W.; Nag, A.; Garcia-Fernandez, M.; Zhou, K. J.; Bruce, P. G. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 2020, 5, 777–785.

[65]

Eum, D.; Kim, B.; Song, J. H.; Park, H.; Jang, H. Y.; Kim, S. J.; Cho, S. P.; Lee, M. H.; Heo, J. H.; Park, J. et al. Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nat. Mater. 2022, 21, 664–672.

[66]

Shi, J. L.; Zhang, J. N.; He, M.; Zhang, X. D.; Yin, Y. X.; Li, H.; Guo, Y. G.; Gu, L.; Wan, L. J. Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 20138–20146.

[67]

Mohanty, D.; Li, J. L.; Abraham, D. P.; Huq, A.; Payzant, E. A.; Wood, D. L.; Daniel, C. Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: Origin of the tetrahedral cations for spinel conversion. Chem. Mater. 2014, 26, 6272–6280.

[68]

Sathiya, M.; Abakumov, A. M.; Foix, D.; Rousse, G.; Ramesha, K.; Saubanère, M.; Doublet, M. L.; Vezin, H.; Laisa, C. P.; Prakash, A. S. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 2015, 14, 230–238.

[69]

Gu, M.; Belharouak, I.; Zheng, J. M.; Wu, H. M.; Xiao, J.; Genc, A.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J. G. et al. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 2013, 7, 760–767.

[70]

Fell, C. R.; Qian, D. N.; Carroll, K. J.; Chi, M. F.; Jones, J. L.; Meng, Y. S. Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chem. Mater. 2013, 25, 1621–1629.

[71]

Dogan, F.; Long, B. R.; Croy, J. R.; Gallagher, K. G.; Iddir, H.; Russell, J. T.; Balasubramanian, M.; Key, B. Re-entrant lithium local environments and defect driven electrochemistry of Li- and Mn-rich Li-ion battery cathodes. J. Am. Chem. Soc. 2015, 137, 2328–2335.

[72]

Gent, W. E.; Lim, K.; Liang, Y. F.; Li, Q. H.; Barnes, T.; Ahn, S. J.; Stone, K. H.; McIntire, M.; Hong, J.; Song, J. H. et al. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 2017, 8, 2091.

[73]

House, R. A.; Marie, J. J.; Park, J.; Rees, G. J.; Agrestini, S.; Nag, A.; Garcia-Fernandez, M.; Zhou, K. J.; Bruce, P. G. Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes. Nat. Commun. 2021, 12, 2975.

[74]

Boivin, E.; House, R. A.; Pérez-Osorio, M. A.; Marie, J. J.; Maitra, U.; Rees, G. J.; Bruce, P. G. Bulk O2 formation and Mg displacement explain O-redox in Na0.67Mn0.72Mg0.28O2. Joule 2021, 5, 1267–1280.

[75]

Li, Z. R.; Kong, W. J.; Yu, Y.; Zhang, J. C.; Wong, D.; Xu, Z. J.; Chen, Z. H.; Schulz, C.; Bartkowiak, M.; Liu, X. F. Tuning bulk O2 and nonbonding oxygen state for reversible anionic redox chemistry in P2‐layered cathodes. Angew. Chem., Int. Ed. 2022, 61, e202115552.

[76]

Boulineau, A.; Simonin, L.; Colin, J. F.; Bourbon, C.; Patoux, S. First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries. Nano Lett. 2013, 13, 3857–3863.

[77]

Yan, P. F.; Zheng, J. M.; Tang, Z. K.; Devaraj, A.; Chen, G. Y.; Amine, K.; Zhang, J. G.; Liu, L. M.; Wang, C. M. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 2019, 14, 602–608.

[78]

Hu, E. Y.; Yu, X. Q.; Lin, R. Q.; Bi, X. X.; Lu, J.; Bak, S.; Nam, K. W.; Xin, H. L.; Jaye, C.; Fischer, D. A. et al. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nat. Energy 2018, 3, 690–698.

[79]

Assat, G.; Glazier, S. L.; Delacourt, C.; Tarascon, J. M. Probing the thermal effects of voltage hysteresis in anionic redox-based lithium-rich cathodes using isothermal calorimetry. Nat. Energy 2019, 4, 647–656.

[80]

Paulsen, J.; Dahn, J. O2-type Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries II. Structure, composition, and properties. J. Electrochem. Soc. 2000, 147, 2478.

[81]

Eum, D.; Kim, B.; Kim, S. J.; Park, H.; Wu, J. P.; Cho, S. P.; Yoon, G.; Lee, M. H.; Jung, S. K.; Yang, W. L. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 2020, 19, 419–427.

[82]

Feng, J.; Jiang, Y. S.; Yu, F. D.; Ke, W.; Que, L. F.; Duh, J. G.; Wang, Z. B. Understanding Li roles in chemical reversibility of O2-type Li-rich layered cathode materials. J. Energy Chem. 2022, 66, 666–675.

[83]

Shang, H. F.; Zuo, Y. X.; Shen, F. R.; Song, J.; Ning, F. H.; Zhang, K.; He, L. H.; Xia, D. G. O2-type Li0.78[Li0.24Mn0.76]O2 nanowires for high-performance lithium-ion battery cathode. Nano Lett. 2020, 20, 5779–5785.

[84]

Cao, X.; Li, H. F.; Qiao, Y.; Jia, M.; He, P.; Cabana, J.; Zhou, H. S. Achieving stable anionic redox chemistry in Li-excess O2-type layered oxide cathode via chemical ion-exchange strategy. Energy Storage Mater. 2021, 38, 1–8.

[85]

Ning, F. H.; Li, B.; Song, J.; Zuo, Y. X.; Shang, H. F.; Zhao, Z. M.; Yu, Z.; Chu, W. S.; Zhang, K.; Feng, G. et al. Inhibition of oxygen dimerization by local symmetry tuning in Li-rich layered oxides for improved stability. Nat. Commun. 2020, 11, 4973.

[86]

Li, Y. W.; Xu, S. Y.; Zhao, W. G.; Chen, Z. F.; Chen, Z. X.; Li, S. N.; Hu, J. T.; Cao, B.; Li, J. Y.; Zheng, S. S. et al. Correlating the dispersion of Li@Mn6 superstructure units with the oxygen activation in Li-rich layered cathode. Energy Storage Mater. 2022, 45, 422–431.

[87]

Mortemard de Boisse, B.; Nishimura, S. I.; Watanabe, E.; Lander, L.; Tsuchimoto, A.; Kikkawa, J.; Kobayashi, E.; Asakura, D.; Okubo, M.; Yamada, A. Highly reversible oxygen-redox chemistry at 4.1 V in Na4/7−x[□1/7Mn6/7]O2 (□: Mn vacancy). Adv. Energy Mater. 2018, 8, 1800409.

[88]

Song, B. H.; Tang, M. X.; Hu, E. Y.; Borkiewicz, O. J.; Wiaderek, K. M.; Zhang, Y. M.; Phillip, N. D.; Liu, X. M.; Shadike, Z.; Li, C. et al. Understanding the low-voltage hysteresis of anionic redox in Na2Mn3O7. Chem. Mater. 2019, 31, 3756–3765.

[89]

Abate, I. I.; Pemmaraju, C. D.; Kim, S. Y.; Hsu, K. H.; Sainio, S.; Moritz, B.; Vinson, J.; Toney, M. F.; Yang, W. L.; Gent, W. E. et al. Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. Energy Environ. Sci. 2021, 14, 4858–4867.

[90]

Pearce, P. E.; Perez, A. J.; Rousse, G.; Saubanère, M.; Batuk, D.; Foix, D.; McCalla, E.; Abakumov, A. M.; Van Tendeloo, G.; Doublet, M. L. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 2017, 16, 580–586.

[91]

Li, Q.; Li, G. S.; Fu, C. C.; Luo, D.; Fan, J. M.; Li, L. P. K+-doped Li1.2Mn0.54Co0.13Ni0. 13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 10330–10341.

[92]

Huang, Y. Y.; Zhu, Y. C.; Nie, A. M.; Fu, H. Y.; Hu, Z. W.; Sun, X. P.; Haw, S. C.; Chen, J. M.; Chan, T. S.; Yu, S. J. et al. Enabling anionic redox stability of P2-Na5/6Li1/4Mn3/4O2 by Mg substitution. Adv. Mater. 2022, 34, 2105404.

[93]

Qing, R. P.; Shi, J. L.; Xiao, D. D.; Zhang, X. D.; Yin, Y. X.; Zhai, Y. B.; Gu, L.; Guo, Y. G. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv. Energy Mater. 2016, 6, 1501914.

[94]

Ma, Q. X.; Chen, Z. J.; Zhong, S. W.; Meng, J. X.; Lai, F. L.; Li, Z. F.; Cheng, C.; Zhang, L.; Liu, T. F. Na-substitution induced oxygen vacancy achieving high transition metal capacity in commercial Li-rich cathode. Nano Energy 2021, 81, 105622.

[95]

Cao, X.; Li, H. F.; Qiao, Y.; Chang, Z.; Wang, P. F.; Li, C.; Yue, X. Y.; He, P.; Cabana, J.; Zhou, H. S. Triggering and stabilizing oxygen redox chemistry in layered Li[Na1/3Ru2/3]O2 enabled by stable Li–O–Na configuration. ACS Energy Lett. 2022, 7, 2349–2356.

[96]

Luo, D.; Cui, J. X.; Zhang, B. K.; Fan, J. M.; Liu, P. Z.; Ding, X. K.; Xie, H. X.; Zhang, Z. H.; Guo, J. J.; Pan, F. et al. Ti-based surface integrated layer and bulk doping for stable voltage and long life of li-rich layered cathodes. Adv. Funct. Mater. 2021, 31, 2009310.

[97]

Zhang, C. X; Wei, B.; Wang, M. Y.; Zhang, D. T.; Uchiyama, T.; Liang, C. P.; Chen, L. B.; Uchimoto, Y.; Zhang, R. F.; Wang, P. et al. Regulating oxygen covalent electron localization to enhance anionic redox reversibility of lithium-rich layered oxide cathodes. Energy Storage Mater. 2022, 46, 512–522.

[98]

Zhang, J. C.; Zhang, Q. H.; Wong, D.; Zhang, N.; Ren, G. X.; Gu, L.; Schulz, C.; He, L. H.; Yu, Y.; Liu, X. F. Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nat. Commun. 2021, 12, 3071.

[99]

Liu, Z. G.; Chu, S. Y.; Wu, J. H.; Cheng, C.; Zhang, L.; Guo, S. H.; Zhou, H. S. Long-enduring oxygen redox enabling robust layered cathodes for sodium-ion batteries. Chem. Eng. J. 2022, 435, 134944.

[100]

Pei, Y.; Li, S.; Chen, Q.; Liang, R. L.; Li, M.; Gao, R.; Ren, D. Z.; Deng, Y. P.; Jin, H. L.; Wang, S. et al. W. Cationic-anionic redox couple gradient to immunize against irreversible processes of Li-rich layered oxides. J. Mater. Chem. A 2021, 9, 2325–2333.

[101]

Wang, T. S.; Zhang, C. X.; Li, S. W.; Shen, X.; Zhou, L. J.; Huang, Q.; Liang, C. P.; Wang, Z. X.; Wang, X. F.; Wei, W. F. Regulating anion redox and cation migration to enhance the structural stability of Li-rich layered oxides. ACS Appl. Mater. Interfaces 2021, 13, 12159–12168.

[102]

Li, B. A.; Yan, H. J.; Ma, J.; Yu, P. R.; Xia, D. G.; Huang, W. F.; Chu, W. S.; Wu, Z. Y. Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions: Towards better electrochemical performance. Adv. Funct. Mater. 2014, 24, 5112–5118.

[103]

Zhang, W.; Sun, Y. G.; Deng, H. Q.; Ma, J. M.; Zeng, Y.; Zhu, Z. Q.; Lv, Z. S.; Xia, H. R.; Ge, X.; Cao, S. K. et al. Dielectric polarization in inverse spinel-structured Mg2TiO4 coating to suppress oxygen evolution of Li-rich cathode materials. Adv. Mater. 2020, 32, 2000496.

[104]

Hu, S. J.; Li, Y.; Chen, Y. H.; Peng, J. M.; Zhou, T. F.; Pang, W. K.; Didier, C.; Peterson, V. K.; Wang, H. Q.; Li, Q. Y. et al. Insight of a phase compatible surface coating for long-durable Li-rich layered oxide cathode. Adv. Energy Mater. 2019, 9, 1901795.

[105]

Li, Q. Y.; Zhou, D.; Zhang, L. J.; Ning, D.; Chen, Z. H.; Xu, Z. J.; Gao, R.; Liu, X. Z.; Xie, D. H.; Schumacher, G. et al. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy. Adv. Funct. Mater. 2019, 29, 1806706.

[106]

Pan, W.; Peng, W. J.; Yan, G. C.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Gui, W. H.; Wang, J. X.; Chen, N. Suppressing the voltage decay and enhancing the electrochemical performance of Li1.2Mn0.54Co0.13Ni0.13O2 by multifunctional Nb2O5 coating. Energy Technol. 2018, 6, 2139–2145.

[107]

Zhu, Z.; Yu, D. W.; Yang, Y.; Su, C.; Huang, Y. M.; Dong, Y. H.; Waluyo, I.; Wang, B. M.; Hunt, A.; Yao, X. H. et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 2019, 4, 1049–1058.

[108]

Zhu, Z.; Gao, R.; Waluyo, I.; Dong, Y. H.; Hunt, A.; Lee, J.; Li, J. Stabilized Co-free Li-rich oxide cathode particles with an artificial surface prereconstruction. Adv. Energy Mater. 2020, 10, 2001120.

[109]

Ju, X. K.; Hou, X.; Beuse, T.; Liu, Z. Q.; Du, L. L.; Brinkmann, J. P.; Paillard, E.; Wang, T. H.; Winter, M.; Li, J. Tailoring of gradient particles of Li-rich layered cathodes with mitigated voltage decay for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 43596–43604.

[110]

Luo, D.; Ding, X. K.; Hao, X. D.; Xie, H. X.; Cui, J. X.; Liu, P. Z.; Yang, X. H.; Zhang, Z. H.; Guo, J. J.; Sun, S. H. et al. Ni/Mn and Al dual concentration-gradients to mitigate voltage decay and capacity fading of Li-rich layered cathodes. ACS Energy Lett. 2021, 6, 2755–2764.

[111]

Song, D. P.; Yang, Z. W.; Zhao, Q.; Sun, X. L.; Wu, Y.; Zhang, Y.; Gao, J.; Wang, C.; Yang, L.; Ohsaka, T. et al. Dilute electrolyte to mitigate capacity decay and voltage fading of Co-free Li-rich cathode for next-generation Li-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 12264–12275.

[112]

Li, Y. X.; Li, W. K.; Shimizu, R.; Cheng, D. Y.; Nguyen, H. N.; Paulsen, J.; Kumakura, S.; Zhang, M. H.; Meng, Y. S. Elucidating the effect of borate additive in high-voltage electrolyte for Li-rich layered oxide materials. Adv. Energy Mater. 2022, 12, 2103033.

Nano Research
Pages 3766-3780
Cite this article:
Zheng W, Liang G, Zhang S, et al. Understanding voltage hysteresis and decay during anionic redox reaction in layered transition metal oxide cathodes: A critical review. Nano Research, 2023, 16(3): 3766-3780. https://doi.org/10.1007/s12274-022-5003-1
Topics:
Part of a topical collection:

1209

Views

12

Crossref

22

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 31 May 2022
Revised: 27 August 2022
Accepted: 02 September 2022
Published: 07 October 2022
© Tsinghua University Press 2022
Return