AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ratiometric fluorescent Si-FITC nanoprobe for immunoassay of SARS-CoV-2 nucleocapsid protein

Guobin Mao1,§Silu Ye1,2,§Wen Yin2Yang Yang3Xinghu Ji4Jin He2Yingxia Liu3Junbiao Dai1Zhike He4( )Yingxin Ma1( )
CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

§ Guobin Mao and Silu Ye contributed equally to this work.

Show Author Information

Graphical Abstract

A ratiometric fluorescent probe, Si-FITC NPs, was prepared via a one-pot hydrothermal method for immunoassay of SARS-CoV-2 N protein. The sensitivity of the ratiometric ELISA was higher than that of the commercial kit and the COVID-19 and non-COVID-19 samples were effectively distinguished by the ratiometric ELISA.

Abstract

Coronavirus disease 2019 (COVID-19) highlights the importance of rapid and reliable diagnostic assays for the management of virus transmission. Here, we developed a one-pot hydrothermal method to prepare Si-FITC nanoparticles (NPs) for the fluorescent immunoassay of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N protein). The synthesis of Si-FITC NPs did not need post-modification, which addressed the issue of quantum yield reduction during the coupling reaction. Si-FITC NPs showed two distinct peaks, Si fluorescence at λem = 385 nm and FITC fluorescence at λem = 490 nm. In the presence of KMnO4, Si fluorescence was decreased and FITC fluorescence was enhanced. Briefly, in the presence of N protein, catalase (CAT)-linked secondary antibody/reporter antibody/N protein/capture antibody immunocomplexes were formed on microplates. Subsequently, hydrogen peroxide (H2O2) and Si-FITC NPs/KMnO4 were injected into the microplate together. The decomposition of H2O2 by CAT resulted in remaining of KMnO4, which changed the fluorescence intensity ratio of Si-FITC NPs. The fluorescence intensity ratio correlated significantly with the N protein concentration ranging from 0.02 to 50.00 ng/mL, and the detection limit was 0.003 ng/mL, which was more sensitive than the commercial ELISA kit with a detection limit of 0.057 ng/mL. The N protein concentration can be accurately determined in human serum. Furthermore, the COVID-19 and non-COVID-19 patients were distinguishable by this method. Therefore, the ratiometric fluorescent immunoassay can be used for SARS-CoV-2 infection diagnosis with a high sensitivity and selectivity.

Electronic Supplementary Material

Download File(s)
12274_2022_5005_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R. et al. A novel coronavirus from patients with pneumonia in China, 2019. New. Engl. J. Med. 2020, 382, 727–733.

[2]

Zhou, P.; Yang, X. L.; Wang, X. G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H. R.; Zhu, Y.; Li, B.; Huang, C. L. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273.

[3]

Rosenthal, P. J. The importance of diagnostic testing during a viral pandemic: early lessons from novel coronavirus disease (COVID-19). Am. J. Trop. Med. Hyg. 2020, 102, 915–916.

[4]

Yang, Y.; Yang, M.; Yuan, J.; Wang, F.; Wang, Z.; Li, J.; Zhang, M.; Xing, L.; Wei, J.; Peng, L. et al. Laboratory diagnosis and monitoring the viral shedding of SARS-CoV-2 infection. Innovation (N Y) 2020, 1, 100061.

[5]

Wiersinga, W. J.; Rhodes, A.; Cheng, A. C.; Peacock, S. J.; Prescott, H. C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19) a review. JAMA. 2020, 324, 782–793.

[6]

Vogels, C. B. F.; Brito, A. F.; Wyllie, A. L.; Fauver, J. R.; Ott, I. M.; Kalinich, C. C.; Petrone, M. E.; Casanovas-Massana, A.; Muenker, M. C.; Moore, A. J. et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets. Nat. Microbiol. 2020, 5, 1299–1305+.

[7]

Wang, Y.; Kang, H.; Liu, X.; Tong, Z. Combination of RT-qPCR testing and clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2 outbreak. J. Med. Virol. 2020, 92, 538–539.

[8]

Miller, S.; Chiu, C.; Rodino, K. G.; Miller, M. B. Point-counterpoint: should we be performing metagenomic next-generation sequencing for infectious disease diagnosis in the clinical laboratory? J. Clin. Microbiol. 2020, 58, e01739–19.

[9]

Augustine, R.; Hasan, A.; Das, S.; Ahmed, R.; Mori, Y.; Notomi, T.; Kevadiya, B. D.; Thakor, A. S. Loop-mediated isothermal amplification (LAMP): A rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology (Basel). 2020, 9, 182.

[10]

Lalli, M. A.; Langmade, S. J.; Chen, X.; Fronick, C. C.; Sawyer, C. S.; Burcea, L. C.; Wilkinson, M. N.; Fulton, R. S.; Heinz, M.; Buchser, W. J. et al. Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric reverse-transcription loop-mediated isothermal amplification. Clin. Chem. 2021, 67, 415–424.

[11]

Fozouni, P.; Son, S.; Derby, M. D. d. L.; Knott, G. J.; Gray, C. N.; D'Ambrosio, M. V.; Zhao, C.; Switz, N. A.; Kumar, G. R.; Stephens, S. I. et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2021, 184, 323–333.e9.

[12]
Broughton, J. P.; Deng, X.; Yu, G.; Fasching, C. L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J. A.; Granados, A.; Sotomayor-Gonzalez, A. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. biotechnol. 2020, 38, 870‒874.
[13]

Ding, X.; Yin, K.; Li, Z.; Lalla, R. V.; Ballesteros, E.; Sfeir, M. M.; Liu, C. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nat. Commun. 2020, 11, 4711.

[14]

Shen, M.; Zhou, Y.; Ye, J.; Al-Maskri, A. A. A.; Kang, Y.; Zeng, S.; Cai, S. Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharm. Anal. 2020, 10, 97–101.

[15]

Chen, M.; Cui, D.; Zhao, Z.; Kang, D.; Li, Z.; Albawardi, S.; Alsageer, S.; Alamri, F.; Alhazmi, A.; Amer, M. R. et al. Highly sensitive, scalable, and rapid SARS-CoV-2 biosensor based on In2O3 nanoribbon transistors and phosphatase. Nano. Res. 2022, 15, 5510–5516.

[16]

Hu, R.; Liao, T.; Ren, Y.; Liu, W.; Ma, R.; Wang, X.; Lin, Q.; Wang, G.; Liang, Y. Sensitively detecting antigen of SARS-CoV-2 by NIR-II fluorescent nanoparticles. Nano Res. 2022, 15, 7313–7319.

[17]

Deeks, J. J.; Dinnes, J.; Takwoingil, Y.; Davenport, C.; Spijker, R.; Taylor-Phillips, S.; Adrianol, A.; Beesel, S.; Dretzkel, J.; di Ruffanol, L. F. et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Db. Syst. Rev. 2020, 6, CD013652.

[18]

Liu, W.; Liu, L.; Kou, G.; Zheng, Y.; Ding, Y.; Ni, W.; Wang, Q.; Tan, L.; Wu, W.; Tang, S. et al. Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. J. Clin. Microbiol. 2020, 58, e00461–20.

[19]

Scohy, A.; Anantharajah, A.; Bodeus, M.; Kabamba-Mukadi, B.; Verroken, A.; Rodriguez-Villalobos, H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 2020, 129, 104455.

[20]

Dinnes, J.; Deeks, J. J.; Adriano, A.; Berhane, S.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; Beese, S. et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection (Review). Cochrane Db. Syst. Rev. 2020, 8, CD013705.

[21]

Reen, D. J. Enzyme-linked immunosorbent assay (ELISA). Methods. Mol. Bioll. 1994, 32, 461–466.

[22]

Zhang, D.; Li, W.; Ma, Z.; Han, H. Improved ELISA for tumor marker detection using electro-readout-mode based on label triggered degradation of methylene blue. Biosens. Bioelectron. 2019, 126, 800–805.

[23]

Wu, L.; Li, G.; Xu, X.; Zhu, L.; Huang, R.; Chen, X. Application of nano-ELISA in food analysis: Recent advances and challenges. Trac-Trend Anal. Chem. 2019, 113, 140–156.

[24]

de la Rica, R.; Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 2012, 7, 821–824.

[25]

Luo, Q.; Wang, H.; Yin, X.; Wang, L. Hydrophilic perovskite microdisks with excellent stability and strong fluorescence for recyclable temperature sensing. Sci. China. Mater. 2019, 62, 1065–1070.

[26]
Liang, Y.; Huang, X.; Yu, R.; Zhou, Y.; Xiong, Y. Fluorescence ELISA for sensitive detection of ochratoxin A based on glucose oxidase-mediated fluorescence quenching of CdTe QDs. Anal. Chim. Acta. 2016, 936, 195‒201.
[27]

Chu, B.; Song, B.; Ji, X.; Su, Y.; Wang, H.; He, Y. Fluorescent silicon nanorods-based ratiometric sensors for long term and real-time measurements of intracellular pH in live cells. Anal. Chem. 2017, 89, 12152–12159.

[28]

Zhai, X.; Song, B.; Chu, B.; Su, Y.; Wang, H.; He, Y. Highly fluorescent, photostable, and biocompatible silicon theranostic nanoprobes against Staphylococcus aureus infections. Nano Res. 2018, 11, 6417–6427.

[29]

Guo, D.; Ji, X.; Peng, F.; Zhong, Y.; Chu, B.; Su, Y.; He, Y. Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of siRNA and doxorubicin to drug-resistant cancer cells. Nano-micro. Lett. 2019, 11, 27.

[30]

Sun, J.; Hu, T.; Chen, C.; Zhao, D.; Yang, F.; Yang, X. Fluorescence immunoassay system via enzyme-enabled in situ synthesis of fluorescent silicon nanoparticles. Anal. Chem. 2016, 88, 9789–9795.

[31]

Chen, C.; Zhao, D.; Wang, B.; Ni, P.; Jiang, Y.; Zhang, C.; Yang, F.; Lu, Y.; Sun, J. Alkaline phosphatase-triggered in situ formation of silicon-containing nanoparticles for a fluorometric and colorimetric dual-channel immunoassay. Anal. Chem. 2020, 92, 4639–4646.

[32]

Wang, J.; Liu, X.; Huang, L.; Jin, J.; Jiang, C.; Li, D.; Wen, H.; Hu, J. Controllable and robust dual-emissive quantum dot nanohybrids as inner filter-based ratiometric probes for visualizable melamine detection. Nanoscale 2020, 12, 4562–4572.

[33]

Zhang, J.; Qian, J.; Mei, Q.; Yang, L.; He, L.; Liu, S.; Zhang, C.; Zhang, K. Imaging-based fluorescent sensing platform for quantitative monitoring and visualizing of fluoride ions with dual-emission quantum dots hybrid. Biosens. Bioelectron. 2019, 128, 61–67.

[34]

Zhang, Y.; Guo, S.; Jiang, Z.; Mao, G.; Ji, X.; He, Z. Rox-DNA functionalized silicon nanodots for ratiometric detection of mercury ions in live cells. Anal. Chem. 2018, 90, 9796–9804.

Nano Research
Pages 2859-2865
Cite this article:
Mao G, Ye S, Yin W, et al. Ratiometric fluorescent Si-FITC nanoprobe for immunoassay of SARS-CoV-2 nucleocapsid protein. Nano Research, 2023, 16(2): 2859-2865. https://doi.org/10.1007/s12274-022-5005-z
Topics:

1128

Views

6

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 04 July 2022
Revised: 31 August 2022
Accepted: 01 September 2022
Published: 30 September 2022
© Tsinghua University Press 2022
Return