AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution

Zhiquan Lang1Guang-Ling Song1,2,3,4( )Pengpeng Wu1Dajiang Zheng1
Center for Marine Materials Corrosion and Protection, Xiamen University, Xiamen 361005, China
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
The University of Queensland, St. Lucia, QLD 4072, Australia
Show Author Information

Graphical Abstract

The as-prepared corrosion-reconstructed Fe-CoCl2 OER catalyst has a low over-potential only 320 mV, and an outstanding durability over 600 h at a high current density 100 mA·cm−2.

Abstract

The anode activity can to a great degree limit the cathodic hydrogen evolution efficiency in an electrolyte cell. Thus, cost-efficient electrocatalysts with good water oxidation performance and stability are highly desired in widespread implementation of the hydrogen production from water splitting. This paper proposes a facile corrosion-reconstruction strategy to transform Fe surface into a Fe-Co hydroxide layer to improve the oxygen evolution activity. The as-prepared catalyst was measured to have an over-potentential as low as 320 mV at 100 mA·cm−2, and its stability even exceeded 600 h. Surface and Raman spectroscopy analyses indicated that the catalyst experienced chemical changes from hydroxides to oxyhydroxides and Co2+ to Co3+ during oxygen evolution reaction (OER). The corrosion-reconstruction is not only an economical method to synthesize a highly efficient, stable and durable Fe-based catalysts, it also converses the detrimental corrosion into a beneficial catalyst fabrication process.

Electronic Supplementary Material

Download File(s)
12274_2022_5006_MOESM1_ESM.pdf (1 MB)

References

[1]

Zhang, L. Z.; Jia, Y.; Gao, G. P.; Yan, X. C.; Chen, N.; Chen, J.; Soo, M. T.; Wood, B.; Yang, D. J.; Du, A. J. et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem 2018, 4, 285–297.

[2]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[3]

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

[4]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[5]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[6]

Masa, J.; Andronescu, C.; Schuhmann, W. Electrocatalysis as the nexus for sustainable renewable energy: The Gordian knot of activity, stability, and selectivity. Angew. Chem., Int. Ed. 2020, 59, 15298–15312.

[7]

Liu, B.; Wang, Y.; Peng, H. Q.; Yang, R. O.; Jiang, Z.; Zhou, X. T.; Lee, C. S.; Zhao, H. J.; Zhang, W. J. Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv. Mater. 2018, 30, 1803144.

[8]

Cai, M. K.; Liu, Q. L.; Xue, Z. Q.; Li, Y. L.; Fan, Y. N.; Huang, A. P.; Li, M. R.; Croft, M.; Tyson, T. A.; Ke, Z. F. et al. Constructing 2D MOFs from 2D LDHs: A highly efficient and durable electrocatalyst for water oxidation. J. Mater. Chem. A 2020, 8, 190–195.

[9]

Wu, T. Z.; Sun, S. N.; Song, J. J.; Xi, S. B.; Du, Y. H.; Chen, B.; Sasangka, W. A.; Liao, H. B.; Gan, C. L.; Scherer, G. G. et al. Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation. Nat. Catal. 2019, 2, 763–772.

[10]
DionigiF.ZengZ. H.SinevI.MerzdorfT.DeshpandeS.LopezM. B.KunzeS.ZegkinoglouI.SarodnikH.FanD. X. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolutionNat. Commun.202011252210.1038/s41467-020-16237-1

Dionigi, F.; Zeng, Z. H.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M. B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D. X. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.

[11]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[12]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[13]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[14]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[15]

Liu, Y. P.; Liang, X.; Gu, L.; Zhang, Y.; Li, G. D.; Zou, X. X.; Chen, J. S. Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6,000 hours. Nat. Commun. 2018, 9, 2609.

[16]

Liu, X. P.; Gong, M. X.; Deng, S. F.; Zhao, T. H.; Shen, T.; Zhang, J.; Wang, D. L. Transforming damage into benefit: Corrosion engineering enabled electrocatalysts for water splitting. Adv. Funct. Mater. 2021, 31, 2009032.

[17]

Li, R. Z.; Wang, D. S. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[18]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[19]

Zheng, X. B.; Chen, Y. P.; Lai, W. H.; Li, P.; Ye, C. L.; Liu, N. N.; Dou, S. X.; Pan, H. G.; Sun, W. P. Enriched d-band holes enabling fast oxygen evolution kinetics on atomic-layered defect-rich lithium cobalt oxide nanosheets. Adv. Funct. Mater. 2022, 32, 2200663.

[20]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru-Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[21]

Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528–4533.

[22]

Zhong, D. Z.; Li, T.; Wang, D.; Li, L. N.; Wang, J. C.; Hao, G. Y.; Liu, G.; Zhao, Q.; Li, J. P. Strengthen metal-oxygen covalency of CoFe-layered double hydroxide for efficient mild oxygen evolution. Nano Res. 2022, 15, 162–169.

[23]

Huang, W. Z.; Li, J. T.; Liao, X. B.; Lu, R. H.; Ling, C. H.; Liu, X.; Meng, J. S.; Qu, L. B.; Lin, M. T.; Hong, X. F. et al. Ligand modulation of active sites to promote electrocatalytic oxygen evolution. Adv. Mater. 2022, 34, 2200270.

[24]

Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed. 2017, 56, 5994–6021.

[25]

Chen, F. Y.; Wu, Z. Y.; Adler, Z.; Wang, H. T. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704–1731.

[26]

Luo, J.; Wang, X. H.; Shen, L.; Fu, H. C.; Chen, X. H.; Wu, L. L.; Zhang, Q.; Luo, H. Q.; Li, N. B. Corrosion-engineered Mo-containing FeCo-(oxy)hydroxide electrocatalysts for superior oxygen evolution reaction. ACS Sustainable Chem. Eng. 2021, 9, 12233–12241.

[27]

López-Fernández, E.; Gil-Rostra, J.; Espinós, J. P.; González-Elipe, A. R.; de Lucas Consuegra, A.; Yubero, F. Chemistry and electrocatalytic activity of nanostructured nickel electrodes for water electrolysis. ACS Catal. 2020, 10, 6159–6170.

[28]

Wang, Y.; Zhu, Y. L.; Zhao, S. L.; She, S. X.; Zhang, F. F.; Chen, Y.; Williams, T.; Gengenbach, T.; Zu, L. H.; Mao, H. Y. et al. Anion etching for accessing rapid and deep self-reconstruction of precatalysts for water oxidation. Matter 2020, 3, 2124–2137.

[29]

Liu, X.; Guo, R. T.; Ni, K.; Xia, F. J.; Niu, C. J.; Wen, B.; Meng, J. S.; Wu, P. J.; Wu, J. S.; Wu, X. J. et al. Reconstruction-determined alkaline water electrolysis at industrial temperatures. Adv. Mater. 2020, 32, 2001136.

[30]

Song, C. W.; Lim, J.; Bae, H. B.; Chung, S. Y. Discovery of crystal structure-stability correlation in iridates for oxygen evolution electrocatalysis in acid. Energy Environ. Sci. 2020, 13, 4178–4188.

[31]

Shen, J. Y.; Wang, M.; Zhao, L.; Jiang, J.; Liu, H.; Liu, J. X. Self-supported stainless steel nanocone array coated with a layer of Ni-Fe oxides/(oxy)hydroxides as a highly active and robust electrode for water oxidation. ACS Appl. Mater. Interfaces 2018, 10, 8786–8796.

[32]

Gao, T. T.; Zhou, C. X.; Chen, X. J.; Huang, Z. H.; Yuan, H. Y.; Xiao, D. Surface in situ self-reconstructing hierarchical structures derived from ferrous carbonate as efficient bifunctional iron-based catalysts for oxygen and hydrogen evolution reactions. J. Mater. Chem. A 2020, 8, 18367–18375.

[33]

Liu, D.; Ai, H. Q.; Li, J. L.; Fang, M. L.; Chen, M. P.; Liu, D.; Du, X. Y.; Zhou, P. F.; Li, F. F.; Lo, K. H. et al. Surface reconstruction and phase transition on vanadium-cobalt-iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation. Adv. Energy Mater. 2020, 10, 2002464.

[34]
ZhuangZ. C.LiY.HuangJ. Z.LiZ. L.ZhaoK. N.ZhaoY. L.XuL.ZhouL.MoskalevaL. V.MaiL. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edgeSci. Bull.2019646176240.1016/j.scib.2019.04.005

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[35]

Yang, H.; Dong, C. N. L.; Wang, H. M.; Qi, R. J.; Gong, L. Q.; Lu, Y. R.; He, C. H.; Chen, S. H.; You, B.; Liu, H. et al. Constructing nickel-iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proc. Natl. Acad. Sci. USA. 2022, 19, e2202812119.

[36]
Li, F. M.; Huang, L.; Zaman, S.; Guo, W.; Liu, H. F.; Guo, X. P.; Xia, B. Y. Corrosion chemistry of electrocatalysts. Adv. Mater., in press, doi: https://doi.org/10.1002/adma.202200840.
[37]

Zhang, Q.; Zhong, H. X.; Meng, F. L.; Bao, D.; Zhang, X. B.; Wei, X. L. Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res. 2018, 11, 1294–1300.

[38]

Zhao, J. W.; Shi, Z. X.; Li, C. F.; Gu, L. F.; Li, G. R. Boosting the electrocatalytic performance of NiFe layered double hydroxides for the oxygen evolution reaction by exposing the highly active edge plane (012). Chem. Sci. 2021, 12, 650–659.

[39]

Koza, J. A.; Hull, C. M.; Liu, Y. C.; Switzer, J. A. Deposition of β-Co(OH)2 films by electrochemical reduction of tris(ethylenediamine)cobalt(III) in alkaline solution. Chem. Mater. 2013, 25, 1922–1926.

[40]

Muthurasu, A.; Tiwari, A. P.; Chhetri, K.; Dahal, B.; Kim, H. Y. Construction of iron doped cobalt- vanadate- cobalt oxide with metal-organic framework oriented nanoflakes for portable rechargeable zinc-air batteries powered total water splitting. Nano Energy 2021, 88, 106238.

[41]

Liu, X. P.; Gong, M. X.; Xiao, D. D.; Deng, S. F.; Liang, J. N.; Zhao, T. H.; Lu, Y.; Shen, T.; Zhang, J.; Wang, D. L. Turning waste into treasure: Regulating the oxygen corrosion on Fe foam for efficient electrocatalysis. Small 2020, 16, 2000663.

[42]

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

[43]

Zhu, K. Y.; Chen, J. Y.; Wang, W. J.; Liao, J. W.; Dong, J. C.; Chee, M. O. L.; Wang, N.; Dong, P.; Ajayan, P. M.; Gao, S. P. et al. Etching-doping sedimentation equilibrium strategy: Accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting. Adv. Funct. Mater. 2020, 30, 2003556.

[44]

Liu, S. J.; Zhu, J.; Sun, M.; Ma, Z. X.; Hu, K.; Nakajima, T.; Liu, X. H.; Schmuki, P.; Wang, L. Promoting the hydrogen evolution reaction through oxygen vacancies and phase transformation engineering on layered double hydroxide nanosheets. J. Mater. Chem. A 2020, 8, 2490–2497.

[45]

Liu, X.; Xia, F. J.; Guo, R. T.; Huang, M.; Meng, J. S.; Wu, J. S.; Mai, L. Q. Ligand and anion Co-leaching induced complete reconstruction of polyoxomolybdate-organic complex oxygen-evolving pre-catalysts. Adv. Funct. Mater. 2021, 31, 2101792.

Nano Research
Pages 2224-2229
Cite this article:
Lang Z, Song G-L, Wu P, et al. A corrosion-reconstructed and stabilized economical Fe-based catalyst for oxygen evolution. Nano Research, 2023, 16(2): 2224-2229. https://doi.org/10.1007/s12274-022-5006-y
Topics:

816

Views

10

Crossref

11

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 09 July 2022
Revised: 21 August 2022
Accepted: 01 September 2022
Published: 22 September 2022
© Tsinghua University Press 2022
Return