AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A study on singlet oxygen generation for tetracycline degradation via modulating the size of α-Fe2O3 nanoparticle anchored on g-C3N4 nanotube photocatalyst

Hongjie Zhu1Minghui Li2,3( )Luning Zou4Youyou Hu3Hongguo Hao1Jianmin Dou1Junjie Mao2( )
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
Gaotang liguo chemical plant, Liaocheng 252059, China
Show Author Information

Graphical Abstract

This study successfully proposed a new approach to promoting the production of 1O2 by modulating nanoparticle size, which enables α-Fe2O3@g-C3N4 nanotube (CNNT) as an effective photocatalyst for tetracycline degradation.

Abstract

Photocatalysis is considered as an effective technique for mitigating ecological risks posed by residual tetracycline (TC). To improve the efficiency of this technique, it is necessary to enable photocatalysts to produce highly reactive species, such as singlet oxygen (1O2). However, due to the high activation energy of 1O2, photocatalysts can hardly produce 1O2 without assistance from external oxidants. Herein, we find that the size-reduced α-Fe2O3 nanoparticles (~ 4 nm) that anchored on g-C3N4 nanotube (α-Fe2O3@CNNT) can spontaneously generate 1O2 for degradation of TC. In comparison, only hydroxyl radical (·OH) can be produced by g-C3N4 nanotube loaded with ~ 14 nm α-Fe2O3 nanoparticles (α-Fe2O3/CNNT). Owing to the high reactivity of the 1O2 species, the photocatalytic degradation rate (Kapp) of TC with α-Fe2O3@CNNT (0.056 min−1) was 1.8 times higher than that of α-Fe2O3/CNNT. The experimental results and theoretical calculations suggested that reducing the size of α-Fe2O3 nanoparticles anchored on g-C3N4 nanotube decreased the surface electron density of α-Fe2O3, which induces the generation of high-valent Fe(IV) active sites over α-Fe2O3@CNNT and turns the degradation pathway into a unique 1O2 dominated process. This study provides a new insight on the generation of 1O2 for effective degradation of environmental pollutant.

Electronic Supplementary Material

Download File(s)
12274_2022_5015_MOESM1_ESM.pdf (2.5 MB)

References

[1]

Jones, K. C. Persistent organic pollutants (POPs) and related chemicals in the global environment: Some personal reflections. Environ. Sci. Technol. 2021, 55, 9400–9412.

[2]

Zhang, C.; Zhao, X.; Wang, C.; Hakizimana, I.; Crittenden, J. C.; Laghari, A. A. Electrochemical flow-through disinfection reduces antibiotic resistance genes and horizontal transfer risk across bacterial species. Water Res. 2022, 212, 118090.

[3]
Guo, Z. Y.; Kodikara, D.; Albi, L. S.; Hatano, Y.; Chen, G.; Yoshimura, C.; Wang, J. Q. Photodegradation of organic micropollutants in aquatic environment: Importance, factors and processes. Water Res., in press, https://doi.org/10.1016/j.watres.2022.118236.
[4]

Song, C. L.; Zhan, Q.; Liu, F.; Wang, C.; Li, H. C.; Wang, X.; Guo, X. F.; Cheng, Y. C.; Sun, W.; Wang, L. et al. Overturned loading of inert CeO2 to active Co3O4 for unusually improved catalytic activity in Fenton-like reactions. Angew. Chem., Int. Ed. 2022, 61, e202200406.

[5]

Li, X. N.; Huang, X.; Xi, S. B.; Miao, S.; Ding, J.; Cai, W. Z.; Liu, S.; Yang, X. L.; Yang, H. B.; Gao, J. J. et al. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient Fenton-like catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475.

[6]

An, S. F.; Zhang, G. H.; Wang, T. W.; Zhang, W. N.; Li, K. Y.; Song, C. S.; Miller, J. T.; Miao, S.; Wang, J. H.; Guo, X. W. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 2018, 12, 9441–9450.

[7]

Zhou, Z. R.; Shen, Z. R.; Song, C. L.; Li, M. M.; Li, H.; Zhan, S. H. Boosting the activation of molecular oxygen and the degradation of tetracycline over high loading Ag single atomic catalyst. Water Res. 2021, 201, 117314.

[8]

Qian, K.; Chen, H.; Li, W. L.; Ao, Z. M.; Wu, Y. N.; Guan, X. H. Single-atom Fe catalyst outperforms its homogeneous counterpart for activating peroxymonosulfate to achieve effective degradation of organic contaminants. Environ. Sci. Technol. 2021, 55, 7034–7043.

[9]

Jin, Z.; Liu, Y. F.; Wang, L.; Wang, C. T.; Wu, Z. Y.; Zhu, Q. Y.; Wang, L. X.; Xiao, F. S. Direct synthesis of pure aqueous H2O2 solution within aluminosilicate zeolite crystals. ACS Catal. 2021, 11, 1946–1951.

[10]

Cai, M.; Xu, K.; Li, Y.; Nie, Z.; Zhang, L.; Luo, S. Chiral primary amine/ketone cooperative catalysis for asymmetric α-hydroxylation with hydrogen peroxide. J. Am. Chem. Soc. 2021, 143, 1078–1087.

[11]

Wang, G.; Huang; R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

[12]

Krýsa, J.; Imrich, T.; Paušová, Š.; Krýsová, H.; Neumann-Spallart, M. Hematite films by aerosol pyrolysis: Influence of substrate and photocorrosion suppression by TiO2 capping. Catal. Today 2019, 335, 418–422.

[13]

Chen, L.; Wang, L.; Wan, Y. Y.; Zhang, Y.; Qi, Z. M.; Wu, X. J.; Xu, H. X. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway. Adv. Mater. 2020, 32, 1904433.

[14]

Tang, D. M.; Shao, C. T.; Jiang, S. J.; Sun, C. Z.; Song, S. Q. Graphitic C2N3: An allotrope of g-C3N4 containing active azide pentagons as metal-free photocatalyst for abundant H2 bubble evolution. ACS Nano 2021, 15, 7208–7215.

[15]

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

[16]

Zhang, Y. Z.; Chen, Z. W.; Li, J. L.; Lu, Z. Y.; Wang, X. Self-assembled synthesis of oxygen-doped g-C3N4 nanotubes in enhancement of visible-light photocatalytic hydrogen. J. Energy Chem. 2021, 54, 36–44.

[17]

Huang, C. F.; Wen, Y. P.; Ma, J.; Dong, D. D.; Shen, Y. F.; Liu, S. Q.; Ma, H. B.; Zhang, Y. J. Unraveling fundamental active units in carbon nitride for photocatalytic oxidation reactions. Nat. Commun. 2021, 12, 320.

[18]

Zhu, L. H.; Zhang, H.; Ma, N.; Yu, C. L.; Ding, N. W.; Chen, J. L.; Pao, C. W.; Lee, J. F.; Xiao, Q.; Chen, B. H. Tuning the interfaces in the ruthenium-nickel/carbon nanocatalysts for enhancing catalytic hydrogenation performance. J. Catal. 2019, 377, 299–308.

[19]

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

[20]

Antón-García, D.; Moore, E. E.; Bajada, M. A.; Eisenschmidt, A.; Oliveira, A. R.; Pereira, I. A. C.; Warnan, J.; Reisner, E. Photoelectrochemical hybrid cell for unbiased CO2 reduction coupled to alcohol oxidation. Nat. Synth. 2022, 1, 77–86.

[21]

Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Appl. Catal. B: Environ. 2021, 281, 119539.

[22]

Zhu, L. H.; Sun, Y. L.; Zhu, H. Z.; Chai, G. L.; Yang, Z. Q.; Shang, C. X.; Ye, H. Q.; Chen, B. H.; Kroner, A.; Guo, Z. X. Effective ensemble of Pt single atoms and clusters over the (Ni, Co)(OH)2 substrate catalyzes highly selective, efficient, and stable hydrogenation reactions. ACS Catal. 2022, 12, 8104–8115.

[23]

Jiao, X. C.; Zheng, K.; Chen, Q. X.; Li, X. D.; Li, Y. M.; Shao, W. W.; Xu, J. Q.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Photocatalytic conversion of waste plastics into C2 fuels under simulated natural environment conditions. Angew. Chem., Int. Ed. 2020, 59, 15497–15501.

[24]

Guo, D. L.; Liu, Y. B.; Ji, H. D.; Wang, C. C.; Chen, B.; Shen, C. S.; Li, F.; Wang, Y. X.; Lu, P.; Liu, W. Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement. Environ. Sci. Technol. 2021, 55, 4045–4053.

[25]

Pan, L. H.; Shi, W.; Sen, T.; Wang, L. Z.; Zhang, J. L. Visible light-driven selective organic degradation by FeTiO3/persulfate system: The formation and effect of high valent Fe(IV). Appl. Catal. B: Environ. 2021, 280, 119414.

[26]

Yang, Z. C.; Qian, J. S.; Yu, A. Q.; Pan, B. C. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl. Acad. Sci. USA 2019, 116, 6659–6664.

[27]

Duan, P. J.; Pan, J. W.; Du, W. Y.; Yue, Q. Y.; Gao, B. Y.; Xu, X. Activation of peroxymonosulfate via mediated electron transfer mechanism on single-atom Fe catalyst for effective organic pollutants removal. Appl. Catal. B: Environ. 2021, 299, 120714.

[28]

Xiang, W. M.; Ji, Q. Y.; Xu, C. M.; Guo, Y.; Liu, Y. Z.; Sun, D. Y.; Zhou, W. W.; Xu, Z.; Qi, C. D.; Yang, S. G. et al. Accelerated photocatalytic degradation of iohexol over Co3O4/g-C3N4/Bi2O2CO3 of P–N/N–N dual heterojunction under simulated sunlight by persulfate. Appl. Catal. B: Environ. 2021, 285, 119847.

[29]

Liu, X. M.; Wang, J.; Wu, D.; Wang, Z.; Li, Y.; Fan, X. B.; Zhang, F. B.; Zhang, G. L.; Peng, W. C. N-doped carbon dots decorated 3D g-C3N4 for visible-light driven peroxydisulfate activation:Insights of non-radical route induced by Na+ doping. Appl. Catal. B: Environ. 2022, 310, 121304.

[30]

Zhang, D.; Wu, Y.; Zhang, X. R.; Li, W. B.; Li, Y.; Li, A. M.; Pan, Y. Identification, formation and control of polar brominated disinfection byproducts during cooking with edible salt, organic matter and simulated tap water. Water Res. 2020, 172, 115526.

[31]

Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

[32]

Zhu, L. H.; Zhu, H. Z.; Shakouri, M.; Zeng, L. H.; Yang, Z. Q.; Hu, Y. F.; Ye, H. Q.; Wang, H.; Chen, B. H.; Luque, R. Mechanistic insights into interfacial nano-synergistic effects in trimetallic Rh-on-NiCo on-CNTs for room temperature solvent-free hydrogenations. Appl. Catal. B: Environ. 2021, 297, 120404.

[33]

Pan, Z. M.; Zhang, G. G.; Wang, X. C. Polymeric carbon nitride/reduced graphene oxide/Fe2O3: All-solid-state Z-scheme system for photocatalytic overall water splitting. Angew. Chem., Int. Ed. 2019, 58, 7102–7106.

[34]

Tian, H.; Li, X. Y.; Zeng, L.; Gong, J. L. Recent advances on the design of group VIII base-metal catalysts with encapsulated structures. ACS Catal. 2015, 5, 4959–4977.

[35]

Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 2015, 87, 1051–1069.

[36]

Jiao, L.; Li, J. K.; Richard, L. L.; Sun, Q.; Stracensky, T.; Liu, E. S.; Sougrati, M. T.; Zhao, Z. P.; Yang, F.; Zhong, S. C. et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 2021, 20, 1385–1391.

[37]

Zhou, B. W.; Ou, P. F.; Pant, N.; Cheng, S. B.; Vanka, S.; Chu, S.; Rashid, R. T.; Botton, G.; Song, J.; Mi, Z. T. Highly efficient binary copper-iron catalyst for photoelectrochemical carbon dioxide reduction toward methane. Proc. Natl. Acad. Sci. USA 2020, 117, 1330–1338.

[38]

Kang, H.; Lee, D.; Lee, K. M.; Kim, H. H.; Lee, H.; Sik Kim, M.; Lee, C. Nonradical activation of peroxymonosulfate by hematite for oxidation of organic compounds: A novel mechanism involving high-valent iron species. Chem. Eng. J. 2021, 426, 130743.

[39]

Zhang, Y. M.; Zhang, N. S.; Wang, T. T.; Huang, H. T.; Chen, Y.; Li, Z. S.; Zou, Z. G. Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3. Appl. Catal. B: Environ. 2019, 245, 410–419.

[40]

Xi, J. H.; Xia, H.; Ning, X. M.; Zhang, Z.; Liu, J.; Mu, Z. J.; Zhang, S. T.; Du, P. Y.; Lu, X. Q. Carbon-intercalated 0D/2D hybrid of hematite quantum dots/graphitic carbon nitride nanosheets as superior catalyst for advanced oxidation. Small 2019, 15, 1902744.

[41]

Yang, P. J.; Ou, H. H.; Fang, Y. X.; Wang, X. C. A facile steam reforming strategy to delaminate layered carbon nitride semiconductors for photoredox catalysis. Angew. Chem., Int. Ed. 2017, 56, 3992–3996.

[42]

Zhou, L.; Lei, J. Y.; Wang, F. C.; Wang, L. Z.; Hoffmann, M. R.; Liu, Y. D.; In, S. I.; Zhang, J. L. Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production. Appl. Catal. B: Environ. 2021, 288, 119993.

[43]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[44]

Wang, S.; Zhu, B. C.; Liu, M. J.; Zhang, L. Y.; Yu, J. G.; Zhou, M. H. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Catal. B: Environ. 2019, 243, 19–26.

[45]

Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B: Environ. 2019, 243, 556–565.

[46]

Yang, Y.; Zeng, Z. T.; Zhang, C.; Huang, D. L.; Zeng, G. M.; Xiao, R.; Lai, C.; Zhou, C. Y.; Guo, H.; Xue, W. J. et al. Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight. Chem. Eng. J. 2018, 349, 808–821.

[47]

Huang, D. L.; Li, J.; Zeng, G. M.; Xue, W. J.; Chen, S.; Li, Z. H.; Deng, R.; Yang, Y.; Cheng, M. Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism. Chem. Eng. J. 2019, 375, 121991.

Nano Research
Pages 2236-2244
Cite this article:
Zhu H, Li M, Zou L, et al. A study on singlet oxygen generation for tetracycline degradation via modulating the size of α-Fe2O3 nanoparticle anchored on g-C3N4 nanotube photocatalyst. Nano Research, 2023, 16(2): 2236-2244. https://doi.org/10.1007/s12274-022-5015-x
Topics:

899

Views

12

Crossref

9

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 06 August 2022
Revised: 02 September 2022
Accepted: 03 September 2022
Published: 11 October 2022
© Tsinghua University Press 2022
Return