AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Defect engineering of two-dimensional materials towards next-generation electronics and optoelectronics

Jie Jiang1Peng Yang1Juin J. Liou1Wugang Liao1( )Yang Chai2( )
College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China
Show Author Information

Graphical Abstract

Defect engineering is an effective approach for property modulation. Recent progress of defect engineering in two-dimensional (2D) materials, particularly in device performance enhancement, is reviewed. We aim to give a comprehensive understanding of the influence of defects towards realistic application of 2D materials for future electronics and optoelectronics.

Abstract

The ultrathin body of two-dimensional (2D) materials provides potential for next-generation electronics and optoelectronics. The unavoidable atomic defects substantially determine the physical properties of atomic-level thin 2D materials, thus enabling new functionalities that are impossible in three-dimensional semiconductors. Therefore, rational design of atomic defects provides an alternative approach to modulate the physical properties of 2D materials. In this review, we summarize the recent progress of defect engineering in 2D materials, particularly in device performance enhancement. Firstly, the common defects in 2D materials and approaches for generating and repairing defects, including synthesis and post-growth treatments, are systematically introduced. The correlations between defects and optical, electronic, and magnetic properties of 2D materials are then highlighted. Subsequently, defect engineering for high performance electronics and optoelectronics is emphasized. At last, we provide our perspective on challenges and opportunities in defect engineering of 2D materials.

References

[1]

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

[2]

Su, S. K.; Chuu, C. P.; Li, M. Y.; Cheng, C. C.; Wong, H. S. P.; Li, L. J. Layered semiconducting 2D materials for future transistor applications. Small Struct. 2021, 2, 2000103.

[3]

Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

[4]

Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

[5]

Zhu, Y.; Sun, X. Q.; Tang, Y. L.; Fu, L.; Lu, Y. R. Two-dimensional materials for light emitting applications: Achievement, challenge and future perspectives. Nano Res. 2021, 14, 1912–1936.

[6]

Bertolazzi, S.; Bondavalli, P.; Roche, S.; San, T.; Choi, S. Y.; Colombo, L.; Bonaccorso, F.; Samori, P. Nonvolatile memories based on graphene and related 2D materials. Adv. Mater. 2019, 31, 1806663.

[7]

Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549.

[8]

Shen, P. C.; Lin, Y. X.; Su, C.; McGahan, C.; Lu, A. Y.; Ji, X.; Wang, X. Z.; Wang, H. Z.; Mao, N. N.; Guo, Y. F. et al. Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nat. Electron. 2022, 5, 28–36.

[9]

Lien, D. H.; Uddin, S. Z.; Yeh, M.; Amani, M.; Kim, H.; Ager III, J. W.; Yablonovitch, E.; Javey, A. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 2019, 364, 468–471.

[10]

Qiu, H.; Xu, T.; Wang, Z. L.; Ren, W.; Nan, H. Y.; Ni, Z. H.; Chen, Q.; Yuan, S. J.; Miao, F.; Song, F. Q. et al. Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun. 2013, 4, 2642.

[11]

Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.

[12]

Jiang, J.; Ling, C. Y.; Xu, T.; Wang, W. H.; Niu, X. H.; Zafar, A.; Yan, Z. Z.; Wang, X. M.; You, Y. M.; Sun, L. T. et al. Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater. 2018, 30, 1804332.

[13]

Wang, Q. X.; Zhang, Q.; Zhao, X. X.; Luo, X.; Wong, C. P. Y.; Wang, J. Y.; Wan, D. Y.; Venkatesan, T.; Pennycook, S. J.; Loh, K. P. et al. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett. 2018, 18, 6898–6905.

[14]

Mendelson, N.; Chugh, D.; Reimers, J. R.; Cheng, T. S.; Gottscholl, A.; Long, H.; Mellor, C. J.; Zettl, A.; Dyakonov, V.; Beton, P. H. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 2021, 20, 321–328.

[15]

Avsar, A.; Ciarrocchi, A.; Pizzochero, M.; Unuchek, D.; Yazyev, O. V.; Kis, A. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 2019, 14, 674–678.

[16]

Zhang, X. K.; Gao, L.; Yu, H. H.; Liao, Q. L.; Kang, Z.; Zhang, Z.; Zhang, Y. Single-atom vacancy doping in two-dimensional transition metal dichalcogenides. Acc. Mater. Res. 2021, 2, 655–668.

[17]

Liang, Q. J.; Zhang, Q.; Zhao, X. X.; Liu, M. Z.; Wee, A. T. S. Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano 2021, 15, 2165–2181.

[18]

Jiang, J.; Xu, T.; Lu, J. P.; Sun, L. T.; Ni, Z. H. Defect engineering in 2D materials: Precise manipulation and improved functionalities. Research 2019, 2019, 4641739.

[19]

Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

[20]

Shi, Y. Y.; Liang, X. H.; Yuan, B.; Chen, V.; Li, H. T.; Hui, F.; Yu, Z. C. W.; Yuan, F.; Pop, E.; Wong, H. S. P. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 2018, 1, 458–465.

[21]

Wu, X. H.; Ge, R. J.; Chen, P. A.; Chou, H.; Zhang, Z. P.; Zhang, Y. F.; Banerjee, S.; Chiang, M. H.; Lee, J. C.; Akinwande, D. Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 2019, 31, 1806790.

[22]

Ge, R. J.; Wu, X. H.; Liang, L. B.; Hus, S. M.; Gu, Y. Q.; Okogbue, E.; Chou, H.; Shi, J. P.; Zhang, Y. F.; Banerjee, S. K. et al. A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon. Adv. Mater. 2021, 33, 2007792.

[23]

Yan, X. B.; Zhao, Q. L.; Chen, A. P.; Zhao, J. H.; Zhou, Z. Y.; Wang, J. J.; Wang, H.; Zhang, L.; Li, X. Y.; Xiao, Z. A. et al. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small 2019, 15, 1901423.

[24]

Hus, S. M.; Ge, R. J.; Chen, P. A.; Liang, L. B.; Donnelly, G. E.; Ko, W.; Huang, F. M.; Chiang, M. H.; Li, A. P.; Akinwande, D. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 2021, 16, 58–62.

[25]

Zhou, F. C.; Chen, J. W.; Tao, X. M.; Wang, X. R.; Chai, Y. 2D materials based optoelectronic memory: Convergence of electronic memory and optical sensor. Research 2019, 2019, 9490413.

[26]

Yin, L.; He, P.; Cheng, R. Q.; Wang, F.; Wang, F. M.; Wang, Z. X.; Wen, Y.; He, J. Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nat. Commun. 2019, 10, 4133.

[27]

Wang, Q. S.; Wen, Y.; Cai, K. M.; Cheng, R. Q.; Yin, L.; Zhang, Y.; Li, J.; Wang, Z. X.; Wang, F.; Wang, F. M. et al. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv. 2018, 4, eaap7916.

[28]

Liao, F. Y.; Zhou, Z.; Kim, B. J.; Chen, J. W.; Wang, J. L.; Wan, T. Q.; Zhou, Y.; Hoang, A. T.; Wang, C.; Kang, J. F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 2022, 5, 84–91.

[29]

Shen, Y. T.; Xu, T.; Tan, X. D.; He, L. B.; Yin, K. B.; Wan, N.; Sun, L. T. In situ repair of 2D chalcogenides under electron beam irradiation. Adv. Mater. 2018, 30, 1705954.

[30]

Wang, M.; Cai, S. H.; Pan, C.; Wang, C. Y.; Lian, X. J.; Zhuo, Y.; Xu, K.; Cao, T. J.; Pan, X. Q.; Wang, B. G. et al. Robust memristors based on layered two-dimensional materials. Nat. Electron. 2018, 1, 130–136.

[31]

Schuler, B.; Cochrane, K. A.; Kastl, C.; Barnard, E. S.; Wong, E.; Borys, N. J.; Schwartzberg, A. M.; Ogletree, D. F.; De Abajo, F. J. G.; Weber-Bargioni, A. Electrically driven photon emission from individual atomic defects in monolayer WS2. Sci. Adv. 2020, 6, eabb5988.

[32]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[33]

Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985–6992.

[34]

Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

[35]

Zhang, S.; Wang, C. G.; Li, M. Y.; Huang, D.; Li, L. J.; Ji, W.; Wu, S. W. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 2017, 119, 046101.

[36]

Barja, S.; Refaely-Abramson, S.; Schuler, B.; Qiu, D. Y.; Pulkin, A.; Wickenburg, S.; Ryu, H.; Ugeda, M. M.; Kastl, C.; Chen, C. et al. Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun. 2019, 10, 3382.

[37]

Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. Nat. Chem. 2018, 10, 1246–1251.

[38]

Nipane, A.; Karmakar, D.; Kaushik, N.; Karande, S.; Lodha, S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano 2016, 10, 2128–2137.

[39]

Jiang, J. F.; Zhang, Q. H.; Wang, A. Z.; Zhang, Y.; Meng, F. Q.; Zhang, C. C.; Feng, X. J.; Feng, Y. P.; Gu, L.; Liu, H. et al. A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment. Small 2019, 15, 1901791.

[40]

Susarla, S.; Kutana, A.; Hachtel, J. A.; Kochat, V.; Apte, A.; Vajtai, R.; Idrobo, J. C.; Yakobson, B. I.; Tiwary, C. S.; Ajayan, P. M. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater. 2017, 29, 1702457.

[41]

Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2−2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264–269.

[42]

Chen, Y. F.; Xi, J. Y.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z. G.; Huang, Y. S.; Xie, L. M. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 2013, 7, 4610–4616.

[43]

Zhang, K. H.; Feng, S. M.; Wang, J. J.; Azcatl, A.; Lu, N.; Addou, R.; Wang, N.; Zhou, C. J.; Lerach, J.; Bojan, V. et al. Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett. 2015, 15, 6586–6591.

[44]

Suh, J.; Tan, T. L.; Zhao, W. J.; Park, J.; Lin, D. Y.; Park, T. E.; Kim, J.; Jin, C. H.; Saigal, N.; Ghosh, S. et al. Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun. 2018, 9, 199.

[45]

Bai, G. X.; Yuan, S. G.; Zhao, Y. D.; Yang, Z. B.; Choi, S. Y.; Chai, Y.; Yu, S. F.; Lau, S. P.; Hao, J. H. 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down- and up-conversion photoluminescence. Adv. Mater. 2016, 28, 7472–7477.

[46]

Li, B.; Huang, L.; Zhong, M. Z.; Huo, N. J.; Li, Y. T.; Yang, S. X.; Fan, C.; Yang, J. H.; Hu, W. P.; Wei, Z. M. et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0. 84S2 bilayer nanosheets. ACS Nano 2015, 9, 1257–1262.

[47]

Lin, Y. C.; Dumcenco, D. O.; Komsa, H. P.; Niimi, Y.; Krasheninnikov, A. V.; Huang, Y. S.; Suenaga, K. Properties of individual dopant atoms in single-layer MoS2: Atomic structure, migration, and enhanced reactivity. Adv. Mater. 2014, 26, 2857–2861.

[48]

Zhang, X. K.; Liao, Q. L.; Liu, S.; Kang, Z.; Zhang, Z.; Du, J. L.; Li, F.; Zhang, S. H.; Xiao, J. K.; Liu, B. S. et al. Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun. 2017, 8, 15881.

[49]

Meyer, J. C.; Kisielowski, C.; Erni, R.; Rossell, M. D.; Crommie, M. F.; Zettl, A. Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett. 2008, 8, 3582–3586.

[50]

Komsa, H. P.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B 2013, 88, 035301.

[51]

Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

[52]

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

[53]

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

[54]

Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744–2756.

[55]

Xu, T.; Yin, K. B.; Sun, L. T. In-situ study of electron irradiation on two-dimensional layered materials. Chin. Sci. Bull. 2017, 62, 2919–2930.

[56]

Xu, T.; Zhou, Y. L.; Tan, X. D.; Yin, K. B.; He, L. B.; Banhart, F.; Sun, L. T. Creating the smallest BN nanotube from bilayer h-BN. Adv. Funct. Mater. 2017, 27, 1603897.

[57]

Mitterreiter, E.; Schuler, B.; Cochrane, K. A.; Wurstbauer, U.; Weber-Bargioni, A.; Kastl, C.; Holleitner, A. W. Atomistic positioning of defects in helium ion treated single-layer MoS2. Nano Lett. 2020, 20, 4437–4444.

[58]

Bertolazzi, S.; Bonacchi, S.; Nan, G. J.; Pershin, A.; Beljonne, D.; Samorì, P. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater. 2017, 29, 1606760.

[59]

Kretschmer, S.; Ghaderzadeh, S.; Facsko, S.; Krasheninnikov, A. V. Threshold ion energies for creating defects in 2D materials from first-principles calculations: Chemical interactions are important. J. Phys. Chem. Lett. 2022, 13, 514–519.

[60]

Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.

[61]

Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016, 10, 6853–6860.

[62]

Li, Z. X.; Li, D. Y.; Wang, H. Y.; Xu, X.; Pi, L. J.; Chen, P.; Zhai, T. Y.; Zhou, X. Universal p-type doping via Lewis acid for 2D transition-metal dichalcogenides. ACS Nano 2022, 16, 4884–4891.

[63]

Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

[64]

Enyashin, A. N.; Bar-Sadan, M.; Houben, L.; Seifert, G. Line defects in molybdenum disulfide layers. J. Phys. Chem. C 2013, 117, 10842–10848.

[65]

Yang, P.; Shan, Y. B.; Chen, J.; Ekoya, G.; Han, J. K.; Qiu, Z. J.; Sun, J. J.; Chen, F.; Wang, H. M.; Bao, W. Z. et al. Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale 2020, 12, 1958–1966.

[66]

Yang, P.; Zha, J. J.; Gao, G. Y.; Zheng, L.; Huang, H. X.; Xia, Y. P.; Xu, S. C.; Xiong, T. F.; Zhang, Z. M.; Yang, Z. B. et al. Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility. Nano-Micro Lett. 2022, 14, 109.

[67]

Yang, P.; Yang, A. G.; Chen, L. X.; Chen, J.; Zhang, Y. W.; Wang, H. M.; Hu, L. G.; Zhang, R. J.; Liu, R.; Qu, X. P. et al. Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res. 2019, 12, 823–827.

[68]

Wu, K.; Li, Z.; Tang, J. B.; Lv, X. L.; Wang, H. L.; Luo, R. C.; Liu, P.; Qian, L. H.; Zhang, S. P.; Yuan, S. L. Controllable defects implantation in MoS2 grown by chemical vapor deposition for photoluminescence enhancement. Nano Res. 2018, 11, 4123–4132.

[69]

Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

[70]

Walsh, L. A.; Hinkle, C. L. Van der Waals epitaxy: 2D materials and topological insulators. Appl. Mater. Today 2017, 9, 504–515.

[71]

Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci. 2019, 106, 100573.

[72]

Xie, Y.; Zhang, B.; Wang, S. X.; Wang, D.; Wang, A. Z.; Wang, Z. Y.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Zhao, M. W. et al. Ultrabroadband MoS2 photodetector with spectral response from 445 to 2,717 nm. Adv. Mater. 2017, 29, 1605972.

[73]

Xie, Y.; Liang, F.; Wang, D.; Chi, S. M.; Yu, H. H.; Lin, Z. S.; Zhang, H. J.; Chen, Y. X.; Wang, J. Y.; Wu, Y. C. Room-temperature ultrabroadband photodetection with MoS2 by electronic-structure engineering strategy. Adv. Mater. 2018, 30, 1804858.

[74]

Kotakoski, J.; Krasheninnikov, A. V.; Kaiser, U.; Meyer, J. C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 2011, 106, 105505.

[75]

Wei, X. L.; Wang, M. S.; Bando, Y.; Golberg, D. Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 2011, 5, 2916–2922.

[76]

Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

[77]

Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

[78]

Hong, J. H.; Jin, C. H.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 2017, 29, 1606434.

[79]

Nan, H. Y.; Zhou, R. W.; Gu, X. F.; Xiao, S. Q.; Ostrikov, K. Recent advances in plasma modification of 2D transition metal dichalcogenides. Nanoscale 2019, 11, 19202–19213.

[80]

Voiry, D.; Goswami, A.; Kappera, R.; Silva, C. D. C. C. E.; Kaplan, D.; Fujita, T.; Chen, M. W.; Asefa, T.; Chhowalla, M. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 2015, 7, 45–49.

[81]

Zhu, H.; Wang, Q. X.; Cheng, L. X.; Addou, R.; Kim, J.; Kim, M. J.; Wallace, R. M. Defects and surface structural stability of MoTe2 under vacuum annealing. ACS Nano 2017, 11, 11005–11014.

[82]

Chua, R.; Yang, J.; He, X. Y.; Yu, X. J.; Yu, W.; Bussolotti, F.; Wong, P. K. J.; Loh, K. P.; Breese, M. B. H.; Goh, K. E. J. et al. Can reconstructed se-deficient line defects in monolayer VSe2 induce magnetism? Adv. Mater. 2020, 32, 2000693.

[83]

Chen, J.; Ryu, G. H.; Sinha, S.; Warner, J. H. Atomic structure and dynamics of defects and grain boundaries in 2D Pd2Se3 monolayers. ACS Nano 2019, 13, 8256–8264.

[84]

Lu, J. P.; Carvalho, A.; Chan, X. K.; Liu, H. W.; Liu, B.; Tok, E. S.; Loh, K. P.; Neto, A. H. C.; Sow, C. H. Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 2015, 15, 3524–3532.

[85]

Liang, Q. J.; Zhang, Q.; Gou, J.; Song, T. T.; Arramel; Chen, H.; Yang, M.; Lim, S. X.; Wang, Q. X.; Zhu, R. et al. Performance improvement by ozone treatment of 2D PdSe2. ACS Nano 2020, 14, 5668–5677.

[86]

Kirubasankar, B.; Won, Y. S.; Adofo, L. A.; Choi, S. H.; Kim, S. M.; Kim, K. K. Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chem. Sci. 2022, 13, 7707–7738.

[87]

Yu, Z. H.; Pan, Y. M.; Shen, Y. T.; Wang, Z. L.; Ong, Z. Y.; Xu, T.; Xin, R.; Pan, L. J.; Wang, B. G.; Sun, L. T. et al. Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun. 2014, 5, 5290.

[88]

Roy, S.; Choi, W.; Jeon, S.; Kim, D. H.; Kim, H.; Yun, S. J.; Lee, Y.; Lee, J.; Kim, Y. M.; Kim, J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018, 18, 4523–4530.

[89]

Mahjouri-Samani, M.; Liang, L. B.; Oyedele, A.; Kim, Y. S.; Tian, M. K.; Cross, N.; Wang, K.; Lin, M. W.; Boulesbaa, A.; Rouleau, C. M. et al. Tailoring vacancies far beyond intrinsic levels changes the carrier type and optical response in monolayer MoSe2−x crystals. Nano Lett. 2016, 16, 5213–5220.

[90]

Jayachandran, D.; Oberoi, A.; Sebastian, A.; Choudhury, T. H.; Shankar, B.; Redwing, J. M.; Das, S. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 2020, 3, 646–655.

[91]

Nan, H. Y.; Wu, Z. T.; Jiang, J.; Zafar, A.; You, Y. M.; Ni, Z. H. Improving the electrical performance of MoS2 by mild oxygen plasma treatment. J. Phys. D: Appl. Phys. 2017, 50, 154001.

[92]

Chee, S. S.; Lee, W. J.; Jo, Y. R.; Cho, M. K.; Chun, D. W.; Baik, H.; Kim, B. J.; Yoon, M. H.; Lee, K.; Ham, M. H. Atomic vacancy control and elemental substitution in a monolayer molybdenum disulfide for high performance optoelectronic device arrays. Adv. Funct. Mater. 2020, 30, 1908147.

[93]

Han, H. V.; Lu, A. Y.; Lu, L. S.; Huang, J. K.; Li, H. N.; Hsu, C. L.; Lin, Y. C.; Chiu, M. H.; Suenaga, K.; Chu, C. W. et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 2016, 10, 1454–1461.

[94]

Tran, T. T.; Bray, K.; Ford, M. J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41.

[95]

Shawkat, M. S.; Gil, J.; Han, S. S.; Ko, T. J.; Wang, M. J.; Dev, D.; Kwon, J.; Lee, G. H.; Oh, K. H.; Chung, H. S. et al. Thickness-independent semiconducting-to-metallic conversion in wafer-scale two-dimensional PtSe2 layers by plasma-driven chalcogen defect engineering. ACS Appl. Mater. Interfaces 2020, 12, 14341–14351.

[96]

Bretscher, H.; Li, Z. J.; Xiao, J.; Qiu, D. Y.; Refaely-Abramson, S.; Alexander-Webber, J. A.; Tanoh, A.; Fan, Y.; Delport, G.; Williams, C. A. et al. Rational passivation of sulfur vacancy defects in two-dimensional transition metal dichalcogenides. ACS Nano 2021, 15, 8780–8789.

[97]

Li, X. F.; Puretzky, A. A.; Sang, X. H.; KC, S.; Tian, M. K.; Ceballos, F.; Mahjouri-Samani, M.; Wang, K.; Unocic, R. R.; Zhao, H. et al. Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater. 2017, 27, 1603850.

[98]

Dhall, R.; Neupane, M. R.; Wickramaratne, D.; Mecklenburg, M.; Li, Z.; Moore, C.; Lake, R. K.; Cronin, S. Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling. Adv. Mater. 2015, 27, 1573–1578.

[99]

Dhall, R.; Seyler, K.; Li, Z.; Wickramaratne, D.; Neupane, M. R.; Chatzakis, I.; Kosmowska, E.; Lake, R. K.; Xu, X. D.; Cronin, S. B. Strong circularly polarized photoluminescence from multilayer MoS2 through plasma driven direct-gap transition. ACS Photonics 2016, 3, 310–314.

[100]

Wu, Z. T.; Luo, Z. Z.; Shen, Y. T.; Zhao, W. W.; Wang, W. H.; Nan, H. Y.; Guo, X. T.; Sun, L. T.; Wang, X. R.; You, Y. M. et al. Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res. 2016, 9, 3622–3631.

[101]

Yu, P.; Lin, J. H.; Sun, L. F.; Le, Q. L.; Yu, X. C.; Gao, G. H.; Hsu, C. H.; Wu, D.; Chang, T. R.; Zeng, Q. S. et al. Metal-semiconductor phase-transition in WSe2(1−x)Te2x monolayer. Adv. Mater. 2017, 29, 1603991.

[102]

Wang, Q. X.; Zhang, Q.; Zhao, X. X.; Zheng, Y. J.; Wang, J. Y.; Luo, X.; Dan, J. D.; Zhu, R.; Liang, Q. J.; Zhang, L. et al. High-energy gain upconversion in monolayer tungsten disulfide photodetectors. Nano Lett. 2019, 19, 5595–5603.

[103]

Jones, A. M.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Dery, H.; Yao, W.; Xu, X. D. Excitonic luminescence upconversion in a two-dimensional semiconductor. Nat. Phys. 2016, 12, 323–327.

[104]

Hayee, F.; Yu, L.; Zhang, J. L.; Ciccarino, C. J.; Nguyen, M.; Marshall, A. F.; Aharonovich, I.; Vučković, J.; Narang, P.; Heinz, T. F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 2020, 19, 534–539.

[105]

Fournier, C.; Plaud, A.; Roux, S.; Pierret, A.; Rosticher, M.; Watanabe, K.; Taniguchi, T.; Buil, S.; Quélin, X.; Barjon, J. et al. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat. Commun. 2021, 12, 3779.

[106]

Sun, Y. F.; Cheng, H.; Gao, S.; Sun, Z. H.; Liu, Q. H.; Liu, Q.; Lei, F. C.; Yao, T.; He, J. F.; Wei, S. Q. et al. Freestanding tin disulfide single-layers realizing efficient visible-light water splitting. Angew. Chem., Int. Ed. 2012, 51, 8727–8731.

[107]

Negri, M.; Francaviglia, L.; Dumcenco, D.; Bosi, M.; Kaplan, D.; Swaminathan, V.; Salviati, G.; Kis, A.; Fabbri, F.; Morral, A. F. I. Quantitative nanoscale absorption mapping: A novel technique to probe optical absorption of two-dimensional materials. Nano Lett. 2020, 20, 567–576.

[108]

Lei, F. C.; Zhang, L.; Sun, Y. F.; Liang, L.; Liu, K. T.; Xu, J. Q.; Zhang, Q.; Pan, B. C.; Luo, Y.; Xie, Y. Atomic-layer-confined doping for atomic-level insights into visible-light water splitting. Angew. Chem. 2015, 127, 9398–9402.

[109]

Yang, W. L.; Zhang, L.; Xie, J. F.; Zhang, X. D.; Liu, Q. H.; Yao, T.; Wei, S. Q.; Zhang, Q.; Xie, Y. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6716–6720.

[110]

Zhang, X. Y.; Zhang, S. F.; Xie, Y. F.; Huang, J. W.; Wang, L.; Cui, Y.; Wang, J. Tailoring the nonlinear optical performance of two-dimensional MoS2 nanofilms via defect engineering. Nanoscale 2018, 10, 17924–17932.

[111]

Yin, X. B.; Ye, Z. L.; Chenet, D. A.; Ye, Y.; O’Brien, K.; Hone, J. C.; Zhang, X. Edge nonlinear optics on a MoS2 atomic monolayer. Science 2014, 344, 488–490.

[112]

Murray, W.; Lucking, M.; Kahn, E.; Zhang, T. Y.; Fujisawa, K.; Perea-Lopez, N.; Elias, A. L.; Terrones, H.; Terrones, M.; Liu, Z. W. Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. 2D Mater. 2020, 7, 045020.

[113]

Shang, Z.; Tan, Y.; Zhou, S. Q.; Chen, F. Layer-to-layer compression and enhanced optical properties of few-layer graphene nanosheet induced by ion irradiation. Opt. Eng. 2015, 55, 081303.

[114]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[115]

Xu, X. Z.; Liu, C.; Sun, Z. H.; Cao, T.; Zhang, Z. H.; Wang, E. G.; Liu, Z. F.; Liu, K. H. Interfacial engineering in graphene bandgap. Chem. Soc. Rev. 2018, 47, 3059–3099.

[116]

Son, J.; Lee, S.; Kim, S. J.; Park, B. C.; Lee, H. K.; Kim, S.; Kim, J. H.; Hong, B. H.; Hong, J. Hydrogenated monolayer graphene with reversible and tunable wide band gap and its field-effect transistor. Nat. Commun. 2016, 7, 13261.

[117]

Zbořil, R.; Karlický, F.; Bourlinos, A. B.; Steriotis, T. A.; Stubos, A. K.; Georgakilas, V.; Šafářová, K.; Jančík, D.; Trapalis, C.; Otyepka, M. Graphene fluoride: A stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 2010, 6, 2885–2891.

[118]

Nourbakhsh, A.; Cantoro, M.; Vosch, T.; Pourtois, G.; Clemente, F.; Van Der Veen, M. H.; Hofkens, J.; Heyns, M. M.; De Gendt, S.; Sels, B. F. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology 2010, 21, 435203.

[119]

Peng, X. Y.; Ahuja, R. Symmetry breaking induced bandgap in epitaxial graphene layers on SiC. Nano Lett. 2008, 8, 4464–4468.

[120]

Fan, X. F.; Shen, Z. X.; Liu, A. Q.; Kuo, J. L. Band gap opening of graphene by doping small boron nitride domains. Nanoscale 2012, 4, 2157–2165.

[121]

Stanford, M. G.; Pudasaini, P. R.; Belianinov, A.; Cross, N.; Noh, J. H.; Koehler, M. R.; Mandrus, D. G.; Duscher, G.; Rondinone, A. J.; Ivanov, I. N. et al. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions. Sci. Rep. 2016, 6, 27276.

[122]

Fox, D. S.; Zhou, Y. B.; Maguire, P.; O’Neill, A.; Ó’Coileáin, C.; Gatensby, R.; Glushenkov, A. M.; Tao, T.; Duesberg, G. S.; Shvets, I. V. et al. Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam. Nano Lett. 2015, 15, 5307–5313.

[123]

Oyedele, A. D.; Yang, S. Z.; Feng, T. L.; Haglund, A. V.; Gu, Y. Y.; Puretzky, A. A.; Briggs, D.; Rouleau, C. M.; Chisholm, M. F.; Unocic, R. R. et al. Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc. 2019, 141, 8928–8936.

[124]

Williams, J. S. Ion implantation of semiconductors. Mater. Sci. Eng. A 1998, 253, 8–15.

[125]

Burch, K. S.; Mandrus, D.; Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 2018, 563, 47–52.

[126]

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

[127]

Yue, Q.; Chang, S. L.; Qin, S. Q.; Li, J. B. Functionalization of monolayer MoS2 by substitutional doping: A first-principles study. Phys. Lett. A 2013, 377, 1362–1367.

[128]

Horzum, S.; Çakır, D.; Suh, J.; Tongay, S.; Huang, Y. S.; Ho, C. H.; Wu, J.; Sahin, H.; Peeters, F. M. Formation and stability of point defects in monolayer rhenium disulfide. Phys. Rev. B 2014, 89, 155433.

[129]

Zhang, Z. H.; Zou, X. L.; Crespi, V. H.; Yakobson, B. I. Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 2013, 7, 10475–10481.

[130]

Schulman, D. S.; Arnold, A. J.; Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 2018, 47, 3037–3058.

[131]

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

[132]

Das, S.; Appenzeller, J. WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 2013, 103, 103501.

[133]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

[134]

Zhang, X. K.; Liu, B. S.; Gao, L.; Yu, H. H.; Liu, X. Z.; Du, J. L.; Xiao, J. K.; Liu, Y. H.; Gu, L.; Liao, Q. L. et al. Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun. 2021, 12, 1522.

[135]

Giannazzo, F.; Fisichella, G.; Greco, G.; Di Franco, S.; Deretzis, I.; La Magna, A.; Bongiorno, C.; Nicotra, G.; Spinella, C.; Scopelliti, M. et al. Ambipolar MoS2 transistors by nanoscale tailoring of Schottky barrier using oxygen plasma functionalization. ACS Appl. Mater. Interfaces 2017, 9, 23164–23174.

[136]

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

[137]

Cho, S.; Kim, S.; Kim, J. H.; Zhao, J.; Seok, J.; Keum, D. H.; Baik, J.; Choe, D. H.; Chang, K. J.; Suenaga, K. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 2015, 349, 625–628.

[138]

Zhu, J. Q.; Wang, Z. C.; Yu, H.; Li, N.; Zhang, J.; Meng, J. L.; Liao, M. Z.; Zhao, J.; Lu, X. B.; Du, L. J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216–10219.

[139]

Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2016, 16, 188–193.

[140]

Han, C.; Hu, Z. H.; Gomes, L. C.; Bao, Y.; Carvalho, A.; Tan, S. J. R.; Lei, B.; Xiang, D.; Wu, J.; Qi, D. Y. et al. Surface functionalization of black phosphorus via potassium toward high-performance complementary devices. Nano Lett. 2017, 17, 4122–4129.

[141]

Zhang, X. K.; Liao, Q. L.; Kang, Z.; Liu, B. S.; Liu, X. Z.; Ou, Y.; Xiao, J. K.; Du, J. L.; Liu, Y. H.; Gao, L. et al. Hidden vacancy benefit in monolayer 2D semiconductors. Adv. Mater. 2021, 33, 2007051.

[142]

Sangwan, V. K.; Lee, H. S.; Bergeron, H.; Balla, I.; Beck, M. E.; Chen, K. S.; Hersam, M. C. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 2018, 554, 500–504.

[143]

Zhao, Q. H.; Wang, W.; Carrascoso-Plana, F.; Jie, W. Q.; Wang, T.; Castellanos-Gomez, A.; Frisenda, R. The role of traps in the photocurrent generation mechanism in thin InSe photodetectors. Mater. Horiz. 2020, 7, 252–262.

[144]

Xie, Y.; Liang, F.; Chi, S. M.; Wang, D.; Zhong, K.; Yu, H. H.; Zhang, H. J.; Chen, Y. X.; Wang, J. Y. Defect engineering of MoS2 for room-temperature terahertz photodetection. ACS Appl. Mater. Interfaces 2020, 12, 7351–7357.

[145]

Kang, M. G.; Kim, B.; Ryu, S. H.; Jung, S. W.; Kim, J.; Moreschini, L.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Kim, K. S. Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 2017, 17, 1610–1615.

[146]

Deng, B. C.; Tran, V.; Xie, Y. J.; Jiang, H.; Li, C.; Guo, Q. S.; Wang, X. M.; Tian, H.; Koester, S. J.; Wang, H. et al. Efficient electrical control of thin-film black phosphorus bandgap. Nat. Commun. 2017, 8, 14474.

[147]

Min, B. K.; Nguyen, V. T.; Kim, S. J.; Yi, Y.; Choi, C. G. Surface plasmon resonance-enhanced near-infrared absorption in single-layer MoS2 with vertically aligned nanoflakes. ACS Appl. Mater. Interfaces 2020, 12, 14476–14483.

[148]

Yuan, S. F.; Shen, C. F.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Ma, Y. Q.; Abbas, A.; Liu, B. L.; Haiges, R.; Ott, C. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 2018, 18, 3172–3179.

[149]

Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

[150]

Hwang, A.; Park, M.; Park, Y.; Shim, Y.; Youn, S.; Lee, C. H.; Jeong, H. B.; Jeong, H. Y.; Chang, J.; Lee, K. et al. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure. Sci. Adv. 2021, 7, eabj2521.

[151]

Yu, X. C.; Zhang, S. L.; Zeng, H. B.; Wang, Q. J. Lateral black phosphorene P–N junctions formed via chemical doping for high performance near-infrared photodetector. Nano Energy 2016, 25, 34–41.

[152]

Mitta, S. B.; Ali, F.; Yang, Z.; Moon, I.; Ahmed, F.; Yoo, T. J.; Lee, B. H.; Yoo, W. J. Gate-modulated ultrasensitive visible and near-infrared photodetection of oxygen plasma-treated WSe2 lateral pn-homojunctions. ACS Appl. Mater. Interfaces 2020, 12, 23261–23271.

[153]

Wu, E. P.; Wu, D.; Jia, C.; Wang, Y. G.; Yuan, H. Y.; Zeng, L. H.; Xu, T. T.; Shi, Z. F.; Tian, Y. T.; Li, X. J. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photonics 2019, 6, 565–572.

[154]

Rao, G. F.; Wang, X. P.; Wang, Y.; Wangyang, P. H.; Yan, C. Y.; Chu, J. W.; Xue, L. X.; Gong, C. H.; Huang, J. W.; Xiong, J. et al. Two-dimensional heterostructure promoted infrared photodetection devices. InfoMat 2019, 1, 272–288.

[155]

Khan, M. F.; Rehman, S.; Akhtar, I.; Aftab, S.; Ajmal, H. M. S.; Khan, W.; Kim, D. K.; Eom, J. High mobility ReSe2 field effect transistors: Schottky-barrier-height-dependent photoresponsivity and broadband light detection with Co decoration. 2D Mater. 2020, 7, 015010.

[156]

Rong, Y. M.; Sheng, Y. W.; Pacios, M.; Wang, X. C.; He, Z. Y.; Bhaskaran, H.; Warner, J. H. Electroluminescence dynamics across grain boundary regions of monolayer tungsten disulfide. ACS Nano 2016, 10, 1093–1100.

[157]

Palacios-Berraquero, C.; Barbone, M.; Kara, D. M.; Chen, X. L.; Goykhman, I.; Yoon, D.; Ott, A. K.; Beitner, J.; Watanabe, K.; Taniguchi, T. et al. Atomically thin quantum light-emitting diodes. Nat. Commun. 2016, 7, 12978.

[158]

He, H. K.; Yang, R.; Zhou, W.; Huang, H. M.; Xiong, J.; Gan, L.; Zhai, T. Y.; Guo, X. Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2. Small 2018, 14, 1800079.

[159]

Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.

Nano Research
Pages 3104-3124
Cite this article:
Jiang J, Yang P, Liou JJ, et al. Defect engineering of two-dimensional materials towards next-generation electronics and optoelectronics. Nano Research, 2023, 16(2): 3104-3124. https://doi.org/10.1007/s12274-022-5016-9
Topics:

9893

Views

14

Crossref

16

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 20 June 2022
Revised: 13 August 2022
Accepted: 04 September 2022
Published: 18 November 2022
© Tsinghua University Press 2022
Return