AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Effective regulation mechanisms of Fe-Ni(oxy)hydroxide: Ni-rich heteroatomic bonding (Ni–O–Fe–O–Ni) is essential

Ruo-Yao Fan1Hui-Ying Zhao1Zi-Yi Zhao1Wen-Hui Hu2Xin Liu1Jian-Feng Yu1Han Hu1Yong-Ming Chai1( )Bin Dong1( )
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 95025, USA
Show Author Information

Graphical Abstract

Optimal Fe-Ni(oxy)hydroxide is prepared by rapid electrochemical deposition and oxidative reconstruction. A moderate Ni-rich heteroatomic bonding (Ni-O-Fe-O-Ni) in Fe-Ni(oxy)hydroxide is the optimal choice.

Abstract

Although Fe-Ni combination performs well in transition metal-based oxygen evolution reaction (OER) electrocatalysts, there are lack of clear and general regulations mechanism to fully play the synergistic catalytic effect. Here, we made the utmost of the interaction of Fe–Ni heteroatomic pair to obtain a highly active Fe-Ni(oxy)hydroxide catalytic layer on iron foam (IF) and nickel foam (NF) by in-situ electrochemical deposition and rapid surface reconstruction, which only required 327 and 351 mV overpotential to provide a large current of 1,000 mA·cm−2, respectively. The results confirm that the moderate Ni-rich heteroatomic bonding (Ni–O–Fe–O–Ni) formed by adjusting the Ni/Fe ratio on the catalyst surface is important to offer predominant OER performance. Fe is a key component that enhances OER activity of Ni(O)OH, but Fe-rich structural surface formed by Fe–O–Ni–O–Fe bonding is not ideal. Finally, the remarkable oxygen evolution performance of the prepared Ni2Fe(O)OH/IF and FeNi2(O)OH/NF can be chalked up to the optimized electronic structure of Fe–Ni heteroatomic bonding, the efficient gas spillover, the fast electron transport, and nanosheet clusters morphology. In summary, our work suggests a comprehensive regulation mechanism for the construction of efficient Fe-Ni(oxy)hydroxide catalytic layer on inexpensive, stable, and self-supporting metallic material surface.

Electronic Supplementary Material

Download File(s)
12274_2022_5019_MOESM1_ESM.pdf (1.1 MB)

References

[1]

Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: Cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step. J. Am. Chem. Soc. 2020, 142, 11901–11914.

[2]

Pan, Y.; Sun, K. A.; Liu, S. J.; Cao, X.; Wu, K. L.; Cheong, W. C.; Chen, Z.; Wang, Y.; Li, Y.; Li, Y. Q. et al. Core–shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618.

[3]

Huang, C. Q.; Zhong, Y. H.; Chen, J. X.; Li, J.; Zhang, W.; Zhou, J. Q.; Zhang, Y. L.; Yu, L.; Yu, Y. Fe induced nanostructure reorganization and electronic structure modulation over CoNi(oxy)hydroxide nanorod arrays for boosting oxygen evolution reaction. Chem. Eng. J. 2021, 403, 126304.

[4]

Duan, Y.; Yu, Z. Y.; Hu, S. J.; Zheng, X. S.; Zhang, C. T.; Ding, H. H.; Hu, B. C.; Fu, Q. Q.; Yu, Z. L.; Zheng, X. et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew. Chem., Int. Ed. 2019, 58, 15772–15777.

[5]

Zhu, F. Y.; Xue, J. Y.; Zeng, L. J.; Shang, J. R.; Lu, S. L.; Cao, X. Q.; Abrahams, B. F.; Gu, H. W.; Lang, J. P. One-pot pyrolysis synthesis of highly active Ru/RuOx nanoclusters for water splitting. Nano Res. 2022, 15, 1020–1026.

[6]

Yao, N.; Fan, Z. Y.; Meng, R.; Jia, H. N.; Luo, W. A cobalt hydroxide coated metal-organic framework for enhanced water oxidation electrocatalysis. Chem. Eng. J. 2021, 408, 127319.

[7]

Chen, H.; Shi, L.; Liang, X.; Wang, L. N.; Asefa, T.; Zou, X. X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts. Angew. Chem., Int. Ed. 2020, 59, 19654–19658.

[8]

Cui, B. H.; Hu, Z.; Liu, C.; Liu, S. L.; Chen, F. S.; Hu, S.; Zhang, J. F.; Zhou, W.; Deng, Y. D.; Qin, Z. B. et al. Heterogeneous lamellar-edged Fe-Ni(OH)2/Ni3S2 nanoarray for efficient and stable seawater oxidation. Nano Res. 2021, 14, 1149–1155.

[9]

Fan, R. Y.; Xie, J. Y.; Liu, H. J.; Wang, H. Y.; Li, M. X.; Yu, N.; Luan, R. N.; Chai, Y. M.; Dong, B. Directional regulating dynamic equilibrium to continuously update electrocatalytic interface for oxygen evolution reaction. Chem. Eng. J. 2022, 431, 134040.

[10]

Yan, M. L.; Zhao, Z. Y.; Cui, P. X.; Mao, K.; Chen, C.; Wang, X. Z.; Wu, Q.; Yang, H.; Yang, L. J.; Hu, Z. Construction of hierarchical FeNi3@(Fe, Ni)S2 core–shell heterojunctions for advanced oxygen evolution. Nano Res. 2021, 14, 4220–4226.

[11]

Zhang, X. J.; Chen, Y. F.; Chen, M. L.; Wang, B.; Yu, B.; Wang, X. Q.; Zhang, W. L.; Yang, D. X. FeNi3-modified Fe2O3/NiO/MoO2 heterogeneous nanoparticles immobilized on N, P co-doped CNT as an efficient and stable electrocatalyst for water oxidation. Nanoscale 2020, 12, 3777–3786.

[12]

Wu, T. Z.; Xu, Z. J. Oxygen evolution in spin-sensitive pathways. Curr. Opin. Electrochem. 2021, 30, 100804.

[13]

Wu, T. Z.; Ren, X.; Sun, Y. M.; Sun, S. N.; Xian, G. Y.; Scherer, G. G.; Fisher, A. C.; Mandler, D.; Ager, J. W.; Grimaud, A. et al. Spin pinning effect to reconstructed oxyhydroxide layer on ferromagnetic oxides for enhanced water oxidation. Nat. Commun. 2021, 12, 3634.

[14]

Zhou, Y. N.; Wang, F. L.; Dou, S. Y.; Shi, Z. N.; Dong, B.; Yu, W. L.; Zhao, H. Y.; Wang, F. G.; Yu, J. F.; Chai, Y. M. Motivating high-valence Nb doping by fast molten salt method for NiFe hydroxides toward efficient oxygen evolution reaction. Chem. Eng. J. 2022, 427, 131643.

[15]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[16]

Zhang, G. W.; Zeng, J. R.; Yin, J.; Zuo, C. Y.; Wen, P.; Chen, H. T.; Qiu, Y. J. Iron-facilitated surface reconstruction to in-situ generate nickel-iron oxyhydroxide on self-supported FeNi alloy fiber paper for efficient oxygen evolution reaction. Appl. Catal. B Environ. 2021, 286, 119902.

[17]

Yan, K. L.; Qin, J. F.; Liu, Z. Z.; Dong, B.; Chi, J. Q.; Gao, W. K.; Lin, J. H.; Chai, Y. M.; Liu, C. G. Organic–inorganic hybrids-directed ternary NiFeMoS anemone-like nanorods with scaly surface supported on nickel foam for efficient overall water splitting. Chem. Eng. J. 2018, 334, 922–931.

[18]

Wang, M.; Zhang, L.; Pan, J. L.; Huang, M. R.; Zhu, H. W. A highly efficient Fe-doped Ni3S2 electrocatalyst for overall water splitting. Nano Res. 2021, 14, 4740–4747.

[19]

Yue, K. H.; Liu, J. L.; Xia, C. F.; Zhan, K.; Wang, P.; Wang, X. Y.; Yan, Y.; Xia, B. Y. Controllable synthesis of multidimensional carboxylic acid-based NiFe MOFs as efficient electrocatalysts for oxygen evolution. Mater. Chem. Front. 2021, 5, 7191–7198.

[20]

Liu, M.; Kong, L. J.; Wang, X. M.; He, J.; Zhang, J. J.; Zhu, J.; Bu, X. H. Deciphering of advantageous electrocatalytic water oxidation behavior of metal-organic framework in alkaline media. Nano Res. 2021, 14, 4680–4688.

[21]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[22]

Pan, Y.; Liu, S. J.; Sun, K. A.; Chen, X.; Wang, B.; Wu, K. L.; Cao, X.; Cheong, W. C.; Shen, R. G.; Han, A. J. et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air battery. Angew. Chem., Int. Ed. 2018, 57, 8614–8618.

[23]

Pan, Y.; Chen, Y. J.; Wu, K. L.; Chen, Z.; Liu, S. J.; Cao, X.; Cheong, W. C.; Meng, T.; Luo, J.; Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

[24]

Sivanantham, A.; Ganesan, P.; Vinu, A.; Shanmugam, S. Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catal. 2020, 10, 463–493.

[25]

Chung, D. Y.; Lopes, P. P.; Martins, P. F. B. D.; He, H. Y.; Kawaguchi, T.; Zapol, P.; You, H.; Tripkovic, D.; Strmcnik, D.; Zhu, Y. S. et al. Dynamic stability of active sites in hydr(oxy) oxides for the oxygen evolution reaction. Nat. Energy 2020, 5, 222–230.

[26]

Lopes, P. P.; Chung, D. Y.; Rui, X.; Zheng, H.; He, H. Y.; Martins, P. F. B. D.; Strmcnik, D.; Stamenkovic, V. R.; Zapol, P.; Mitchell, J. F. et al. Dynamically stable active sites from surface evolution of perovskite materials during the oxygen evolution reaction. J. Am. Chem. Soc. 2021, 143, 2741–2750.

[27]

Xu, Q. C.; Jiang, H.; Duan, X. Z.; Jiang, Z.; Hu, Y. J.; Boettcher, S. W.; Zhang, W. Y.; Guo, S. J.; Li, C. Z. Fluorination-enabled reconstruction of NiFe electrocatalysts for efficient water oxidation. Nano Lett. 2021, 21, 492–499.

[28]

Wang, J.; Kim, S. J.; Liu, J. P.; Gao, Y.; Choi, S.; Han, J.; Shin, H.; Jo, S.; Kim, J.; Ciucci, F. et al. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nat. Catal. 2021, 4, 212–222.

[29]

Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

[30]

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

[31]

Zhou, Y. N.; Yu, W. L.; Cao, Y. N.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F. L.; Fan, R. Y.; Zhou, Y. L.; Chai, Y. M. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B Environ. 2021, 292, 120150.

[32]

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

[33]

Stevens, M. B.; Trang, C. D. M.; Enman, L. J.; Deng, J.; Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 2017, 139, 11361–11364.

[34]

Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.

[35]

Sun, Y. M.; Chen, G.; Xi, S. B.; Xu, Z. J. Catalytically influential features in transition metal oxides. ACS Catal. 2021, 11, 13947–13954.

[36]

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

[37]

Bao, F. X.; Kemppainen, E.; Dorbandt, I.; Xi, F. X.; Bors, R.; Maticiuc, N.; Wenisch, R.; Bagacki, R.; Schary, C.; Michalczik, U. et al. Host, suppressor, and promoter—The roles of Ni and Fe on oxygen evolution reaction activity and stability of NiFe alloy thin films in alkaline media. ACS Catal. 2021, 11, 10537–10552.

[38]

Enman, L. J.; Burke, M. S.; Batchellor, A. S.; Boettcher, S. W. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media. ACS Catal. 2016, 6, 2416–2423.

[39]

Wang, J. Y.; Ji, L. L.; Chen, Z. F. In situ rapid formation of a nickel-iron-based electrocatalyst for water oxidation. ACS Catal. 2016, 6, 6987–6992.

[40]

Che, Q. J.; Li, Q.; Tan, Y.; Chen, X. H.; Xu, X.; Chen, Y. S. One-step controllable synthesis of amorphous (Ni-Fe)Sx/NiFe(OH)y hollow microtube/sphere films as superior bifunctional electrocatalysts for quasi-industrial water splitting at large-current-density. Appl. Catal. B Environ. 2019, 246, 337–348.

[41]

Che, Q. J.; Li, Q.; Chen, X. H.; Tan, Y.; Xu, X. Assembling amorphous (Fe-Ni)Cox-OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: Inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Appl. Catal. B Environ. 2020, 263, 118338.

[42]

Niu, S.; Jiang, W. J.; Wei, Z. X.; Tang, T.; Ma, J. M.; Hu, J. S.; Wan, L. J. Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J. Am. Chem. Soc. 2019, 141, 7005–7013.

[43]

Yang, M.; Xie, J. Y.; Yu, W. L.; Cao, Y. N.; Dong, B.; Zhou, Y. N.; Wang, F. L.; Li, Q. Z.; Zhou, Y. L.; Chai, Y. M. Fe(Co)OOH dynamically stable interface based on self-sacrificial reconstruction for long-term electrochemical water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 17450–17458.

[44]

Chi, J.; Yu, H. M.; Jiang, G.; Jia, J.; Qin, B. W.; Yi, B. L.; Shao, Z. G. Construction of orderly hierarchical FeOOH/NiFe layered double hydroxides supported on cobaltous carbonate hydroxide nanowire arrays for a highly efficient oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 3397–3401.

[45]

Fan, R. Y.; Zhou, Y. N.; Li, M. X.; Xie, J. Y.; Yu, W. L.; Chi, J. Q.; Wang, L.; Yu, J. F.; Chai, Y. M.; Dong, B. In situ construction of Fe(Co)OOH through ultra-fast electrochemical activation as real catalytic species for enhanced water oxidation. Chem. Eng. J. 2021, 426, 131943.

[46]

Bao, W. W.; Xiao, L.; Zhang, J. J.; Deng, Z. F.; Yang, C. M.; Ai, T. T.; Wei, X. L. Interface engineering of NiV-LDH@FeOOH heterostructures as high-performance electrocatalysts for oxygen evolution reaction in alkaline conditions. Chem. Commun. 2020, 56, 9360–9363.

[47]

Pan, J. J.; Hao, S. Y.; Zhang, X. W.; Huang, R. X. In situ growth of Fe and Nb co-doped β-Ni(OH)2 nanosheet arrays on nickel foam for an efficient oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 3465–3474.

[48]

Jin, Y. S.; Huang, S. L.; Yue, X.; Du, H. Y.; Shen, P. K. Mo- and Fe-modified Ni(OH)2/NiOOH nanosheets as highly active and stable electrocatalysts for oxygen evolution reaction. ACS Catal. 2018, 8, 2359–2363.

[49]

Ha, J.; Kim, M.; Kim, Y. T.; Choi, J. Ni0.67Fe0. 33 hydroxide incorporated with oxalate for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2021, 13, 42870–42879.

[50]

Liao, H. X.; Tan, P. F.; Dong, R.; Jiang, M.; Hu, X. Y.; Lu, L. L.; Wang, Y.; Liu, H. Q.; Liu, Y.; Pan, J. Insight into the amorphous nickel-iron (oxy)hydroxide catalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2021, 591, 307–313.

[51]

Yu, L.; Wu, L. B.; McElhenny, B.; Song, S. W.; Luo, D.; Zhang, F. H.; Yu, Y.; Chen, S.; Ren, Z. F. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446.

Nano Research
Pages 12026-12034
Cite this article:
Fan R-Y, Zhao H-Y, Zhao Z-Y, et al. Effective regulation mechanisms of Fe-Ni(oxy)hydroxide: Ni-rich heteroatomic bonding (Ni–O–Fe–O–Ni) is essential. Nano Research, 2023, 16(10): 12026-12034. https://doi.org/10.1007/s12274-022-5019-6
Topics:
Part of a topical collection:

12773

Views

9

Crossref

12

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 15 July 2022
Revised: 24 August 2022
Accepted: 06 September 2022
Published: 12 November 2022
© Tsinghua University Press 2022
Return