AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage

Jiangyuan Xing1,§Yongsheng Zhang1,§Yang Jin2Qianzheng Jin2( )
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China

§ Jiangyuan Xing and Yongsheng Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Herein, the high-entropy strategy is applied to Mn-based Prussian blue analogues to increase the structural stability in aqueous Zn-ion batteries. The as-prepared high-entropy Prussian blue analogue (HE-PBA) materials incorporate five transition metal elements of Mn, Co, Ni, Fe and Cu into the nitrogen-coordinated -M- lattice sites leading to an increased configuration entropy. Consequently, HE-PBA electrode showed the remarkable cycling stability than other PBAs electrodes.

Abstract

Mn-based Prussian blue analogues (Mn-PBAs), featuring a three-dimensional (3D) metal-organic framework and multiple redox couples, have gained wide interests in Zn-ion batteries (ZIBs). However, owing to the Jahn-Teller distortion and disproportionation reaction of Mn3+, these materials suffer from poor electrochemical performances and inferior structural stability. Herein, we prepare a typical high-entropy Prussian blue analogue (HE-PBA) with increased configuration entropy through integrating five transition metal elements of Mn, Co, Ni, Fe and Cu into the nitrogen-coordinated -M- lattice sites. Consequently, the HE-PBA presents enhanced uptake of Zn2+ with 80 mAh·g−1 compared to those medium-entropy PBAs, low-entropy PBAs and conventional PBAs, which can be assigned to “cocktail” effect of multiple transition metal active redox couples. Furthermore, a phase transition process from monoclinic phase to rhombohedral phase occurs in HE-PBA cathode, resulting in a stable structure of MN6 (M = Mn, Co, Fe, Ni, Cu) and ZnN4 co-linked to FeC6 through the cyanide ligands. Additionally, the advantages of entropy-driven stability are also confirmed by the calculated reduction energy and the density of states between HE-PBA and KMn[Fe(CN)6] (KMnHCF). This work not only presents a high-performance HE-PBA cathode in ZIBs, but also introduces a novel concept of high entropy benefiting for designing advanced materials.

Electronic Supplementary Material

Download File(s)
12274_2022_5020_MOESM1_ESM.pdf (7.9 MB)

References

[1]

Cao, L. S.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C. Y.; Chen, L.; Vatamanu, J.; Hu, E. Y.; Hourwitz, M. J. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 2021, 16, 902–910.

[2]

Liang, Y. L.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656.

[3]

Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.

[4]

Huang, J. T.; Zhou, J.; Liang, S. Q. Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery Cathodes. Acta Phys. Chim. Sin. 2021, 37, 27–49.

[5]

He, Y. N.; Xu, Y. F.; Zhang, M.; Xu, J. Z.; Chen, B. B.; Zhang, Y. X.; Bao, J. C.; Zhou, X. S. Confining ultrafine SnS nanoparticles in hollow multichannel carbon nanofibers for boosting potassium storage properties. Sci. Bull. 2022, 67, 151–160.

[6]

Liao, J. Y.; Chen, C. L.; Hu, Q.; Du, Y. C.; He, Y. N.; Xu, Y. F.; Zhang, Z. Z.; Zhou, X. S. A low-strain phosphate cathode for high-rate and ultralong cycle-life potassium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 25575–25582.

[7]

Gao, W. L.; Michalicka, J.; Pumera, M. Hierarchical atomic layer deposited V2O5 on 3D printed nanocarbon electrodes for high-performance aqueous zinc-ion batteries. Small 2022, 18, 2105572.

[8]

Tian, Y. P.; Ju, M. M.; Bin, X. Q.; Luo, Y. J.; Que, W. X. Long cycle life aqueous rechargeable battery Zn/Vanadium hexacyanoferrate with H+/Zn2+ coinsertion for high capacity. Chem. Eng. J. 2022, 430, 132964.

[9]

Cao, T.; Zhang, F.; Chen, M. J.; Shao, T.; Li, Z.; Xu, Q. J.; Cheng, D. H.; Liu, H. M.; Xia, Y. Y. Cubic manganese potassium hexacyanoferrate regulated by controlling of the water and defects as a high-capacity and stable cathode material for rechargeable aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 26924–26935.

[10]

Jia, X. X.; Liu, C. F.; Neale, Z. G.; Yang, J. H.; Cao, G. Z. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 2020, 120, 7795–7866.

[11]

Liao, Y. X.; Chen, H. C.; Yang, C.; Liu, R.; Peng, Z. W.; Cao, H. J.; Wang, K. K. Unveiling performance evolution mechanisms of MnO2 polymorphs for durable aqueous zinc-ion batteries. Energy Stor. Mater. 2022, 44, 508–516.

[12]

Jin, Y.; Zou, L. F.; Liu, L. L.; Engelhard, M. H.; Patel, R. L.; Nie, Z. M.; Han, K. S.; Shao, Y. Y.; Wang, C. M.; Zhu, J. et al. Joint charge storage for high-rate aqueous zinc-manganese dioxide batteries. Adv. Mater. 2019, 31, 1900567.

[13]

Zhong, C.; Liu, B.; Ding, J.; Liu, X. R.; Zhong, Y. W.; Li, Y.; Sun, C. B.; Han, X. P.; Deng, Y. D.; Zhao, N. Q. et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 2020, 5, 440–449.

[14]

Zhang, Y. R.; Chen, A. B.; Sun, J. Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 655–667.

[15]

Wan, F.; Niu, Z. Q. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 16358–16367.

[16]

Feng, Z. Y.; Sun, J. J.; Liu, Y. Y.; Jiang, H. M.; Cui, M.; Hu, T.; Meng, C. G.; Zhang, Y. F. Engineering interlayer space of vanadium oxide by pyridinesulfonic acid-assisted intercalation of polypyrrole enables enhanced aqueous zinc-ion storage. ACS Appl. Mater. Interfaces 2021, 13, 61154–61165.

[17]

Li, W. J.; Han, C.; Cheng, G.; Chou, S. L.; Liu, H. K.; Dou, S. X. Chemical properties, structural properties, and energy storage applications of prussian blue analogues. Small 2019, 15, 1900470.

[18]

Shi, Y. C.; Chen, Y.; Shi, L.; Wang, K.; Wang, B.; Li, L.; Ma, Y. M.; Li, Y. H.; Sun, Z. H.; Ali, W. et al. An overview and future perspectives of rechargeable zinc batteries. Small 2020, 16, 2000730.

[19]

Liu, H. Y.; Wang, J. G.; You, Z. Y.; Wei, C. G.; Kang, F. Y.; Wei, B. Q. Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Mater. Today 2021, 42, 73–98.

[20]

Yi, H. C.; Qin, R. Z.; Ding, S. X.; Wang, Y. T.; Li, S. N.; Zhao, Q. H.; Pan, F. Structure and properties of prussian blue analogues in energy storage and conversion applications. Adv. Funct. Mater. 2021, 31, 2006970.

[21]

Du, G. Y.; Pang, H. Recent advancements in Prussian blue analogues: Preparation and application in batteries. Energy Stor. Mater. 2021, 36, 387–408.

[22]

Xu, Y. F.; Du, Y. C.; Yi, Z. Y.; Zhang, Z. Z.; Lai, C. L.; Liao, J. Y.; Zhou, X. S. Coupling Co3[Co(CN)6]2 nanocubes with reduced graphene oxide for high-rate and long-cycle-life potassium storage. J. Energy Chem. 2021, 58, 593–601.

[23]

Xu, J. Y.; Xu, Y. F.; Lai, C. L.; Xia, T. T.; Zhang, B. N.; Zhou, X. S. Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Sci. China Chem. 2021, 64, 1267–1282.

[24]

Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

[25]

Li, H. F.; Ma, L. T.; Han, C. P.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; Zhi, C. Y. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550–587.

[26]

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

[27]

Zeng, Y. X.; Lu, X. F.; Zhang, S. L.; Luan, D. Y.; Li, S.; Lou, X. W. Construction of Co-Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 22189–22194.

[28]

Ma, Y. J.; Ma, Y.; Dreyer, S. L.; Wang, Q. S.; Wang, K.; Goonetilleke, D.; Omar, A.; Mikhailova, D.; Hahn, H.; Breitung, B. et al. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv Mater 2021, 33, 2101342.

[29]

George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

[30]

Xie, B. X.; Zuo, P. J.; Wang, L. G.; Wang, J. J.; Huo, H.; He, M. X.; Shu, J.; Li, H. F.; Lou, S. F.; Yin, G. P. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy 2019, 61, 201–210.

[31]

Oses, C.; Toher, C.; Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 2020, 5, 295–309.

[32]

Wang, Q. S.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T. et al. Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 2019, 12, 2433–2442.

[33]

Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; De Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H. et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.

[34]

Ma, Y. J.; Ma, Y.; Wang, Q. S.; Schweidler, S.; Botros, M.; Fu, T. T.; Hahn, H.; Brezesinski, T.; Breitung, B. High-entropy energy materials: Challenges and new opportunities. Energy Environ. Sci. 2021, 14, 2883–2905.

[35]

Zhao, C. L.; Ding, F. X.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 264–269.

[36]

You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647.

[37]

Ji, Z.; Han, B.; Liang, H. T.; Zhou, C. G.; Gao, Q.; Xia, K. S.; Wu, J. P. On the Mechanism of the improved operation voltage of rhombohedral nickel hexacyanoferrate as cathodes for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 33619–33625.

[38]

Li, J. H.; He, L. Z.; Jiang, J. B.; Xu, Z. F.; Liu, M. Q.; Liu, X.; Tong, H. X.; Liu, Z.; Qian, D. Facile syntheses of bimetallic Prussian blue analogues (KxM[Fe(CN)6nH2O, M = Ni, Co, and Mn) for electrochemical determination of toxic 2-nitrophenol. Electrochim. Acta 2020, 353, 136579.

[39]

Chong, S. K.; Yang, J.; Sun, L.; Guo, S. W.; Liu, Y. N.; Liu, H. K. Potassium nickel iron hexacyanoferrate as ultra-long-life cathode material for potassium-ion batteries with high energy density. ACS Nano 2020, 14, 9807–9818.

[40]

Huang, Y. X.; Xie, M.; Wang, Z. H.; Jiang, Y.; Yao, Y.; Li, S. J.; Li, Z. H.; Li, L.; Wu, F.; Chen, R. J. A chemical precipitation method preparing hollow-core-shell heterostructures based on the prussian blue analogs as cathode for sodium-ion batteries. Small 2018, 14, 1801246.

[41]

Zhao, C. X.; Liu, B.; Li, X. N.; Zhu, K. X.; Hu, R. S.; Ao, Z. M.; Wang, J. H. A Co-Fe Prussian blue analogue for efficient Fenton-like catalysis: The effect of high-spin cobalt. Chem. Commun. 2019, 55, 7151–7154.

[42]

Bie, X. F.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. Synthesis and electrochemical properties of Na-rich Prussian blue analogues containing Mn, Fe, Co, and Fe for Na-ion batteries. J. Power Sources 2018, 378, 322–330.

[43]

Li, Q.; Ma, K. X.; Yang, G. Z.; Wang, C. X. High-voltage non-aqueous Zn/K1.6Mn1. 2Fe(CN)6 batteries with zero capacity loss in extremely long working duration. Energy Stor. Mater. 2020, 29, 246–253.

[44]

Xia, M. T.; Zhang, X. K.; Liu, T. T.; Yu, H. X.; Chen, S.; Peng, N.; Zheng, R. T.; Zhang, J. D.; Shu, J. Commercially available Prussian blue get energetic in aqueous K-ion batteries. Chem. Eng. J. 2020, 394, 124923.

[45]

Ma, L. T.; Chen, S. M.; Long, C. B.; Li, X. L.; Zhao, Y. W.; Liu, Z. X.; Huang, Z. D.; Dong, B. B.; Zapien, J. A.; Zhi, C. Y. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 2019, 9, 1902446.

[46]

Tao, Y. Y.; Li, Z.; Tang, L. B.; Pu, X. M.; Cao, T.; Cheng, D. H.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y. Nickel and cobalt Co-substituted spinel ZnMn2O4@N-rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc-ion battery. Electrochim. Acta 2020, 331, 135296.

[47]

Tang, Y.; Li, W.; Feng, P. Y.; Zhou, M.; Wang, K. L.; Wang, Y. S.; Zaghib, K.; Jiang, K. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 1908754.

[48]

Gao, Y. N.; Yang, H. Y.; Wang, X. R.; Bai, Y.; Zhu, N.; Guo, S. N.; Suo, L. M.; Li, H.; Xu, H. J.; Wu, C. The compensation effect mechanism of Fe-Ni mixed prussian blue analogues in aqueous rechargeable aluminum-ion batteries. ChemSusChem 2020, 13, 732–740.

[49]

Xu, Y.; Wan, J.; Huang, L.; Xu, J.; Ou, M. Y.; Liu, Y.; Sun, X. P.; Li, S.; Fang, C.; Li, Q. et al. Dual redox-active copper hexacyanoferrate nanosheets as cathode materials for advanced sodium-ion batteries. Energy Stor. Mater. 2020, 33, 432–441.

[50]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[51]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[52]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[53]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[54]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

Nano Research
Pages 2486-2494
Cite this article:
Xing J, Zhang Y, Jin Y, et al. Active cation-integration high-entropy Prussian blue analogues cathodes for efficient Zn storage. Nano Research, 2023, 16(2): 2486-2494. https://doi.org/10.1007/s12274-022-5020-0
Topics:

1399

Views

35

Crossref

33

Web of Science

34

Scopus

0

CSCD

Altmetrics

Received: 16 July 2022
Revised: 25 August 2022
Accepted: 06 September 2022
Published: 21 October 2022
© Tsinghua University Press 2022
Return