Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Aqueous rechargeable ammonium-ion (NH4+) batteries (AAIBs) with ammonium ions as charge carriers possess many advantages, yet the relatively low discharge capacities (e.g., < 200 mAh·g−1) of the reported NH4+ host materials hinder the development of AAIBs. Herein, we study the NH4+ storage properties of an electrochemically activated NiCo double hydroxide (A-NiCo-DH) in neutral ammonium acetate electrolyte for the first time. The activation process extracts the interlayer anions (NO3−) from the host material, providing additional cation accommodation sites for charge storage. The introduced H vacancies in A-NiCo-DH could activate the O sites, leading to the enhanced cation adsorption capability for the electrode. Therefore, A-NiCo-DH exhibits a high discharge capacity of 280.6 mAh·g−1 at 0.72 A·g−1 with good rate capability. Spectroscopy studies suggest A-NiCo-DH experiences a NH4+/H+ coinsertion mechanism. A NH4+-Zn hybrid cell is assembled using A-NiCo-DH as the cathode and Zn foil as the anode, respectively. The device delivers an energy density of 306 Wh·kg−1 at the power density of 745.8 W·kg−1 (based on the active mass of A-NiCo-DH). This work provides a new NH4+ storage material and would push forward the development of aqueous NH4+-based batteries.
Ruan, P. C.; Liang, S. Q.; Lu, B. A.; Fan, H. J.; Zhou, J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem., Int. Ed. 2022, 61, e202200598.
Yan, L.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Wang, Z.; Wang, Y. G. Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 2020, 5, 685–691.
Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.
Li, X.; Chen, Z. J.; Yang, Y. Q.; Liang, S. Q.; Lu, B. G.; Zhou, J. The phosphate cathodes for aqueous zinc-ion batteries. Inorg. Chem. Front. 2022, 9, 3986–3998.
Sun, S.; Rao, D. W.; Zhai, T.; Liu, Q.; Zhang, H. S.; Xia, H. Synergistic interface-assisted electrode–electrolyte coupling toward advanced charge storage. Adv. Mater. 2020, 27, 2005344.
Liu, Z. X.; Yang, Y. Q.; Liang, S. Q.; Lu, B. A.; Zhou, J. pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2021, 2, 2100119.
Sun, S.; Liu, B.; Zhang, H. S.; Guo, Q. B.; Xia, Q. Y.; Zhai, T.; Xia, H. Boosting energy storage via confining soluble redox species onto solid-liquid Interface. Adv. Energy Mater. 2021, 24, 2003599.
Liu, Z. X.; Qin, L. P.; Lu, B. G.; Wu, X. W.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. ChemSusChem 2022, 15, e202200348.
Dong, S. Y.; Shin, W.; Jiang, H.; Wu, X. Y.; Li, Z. F.; Holoubek, J.; Stickle, W. F.; Key, B.; Liu, C.; Lu, J. et al. Ultra-fast NH4+ storage: Strong H bonding between NH4+ and Bi-layered V2O5. Chem 2019, 5, 1537–1551.
Zhang, X. K.; Xia, M. T.; Yu, H. X.; Zhang, J. W.; Yang, Z. W.; Zhang, L. Y.; Shu, J. Hydrogen bond-assisted ultra-stable and fast aqueous NH4+ storage. Nano-Micro Lett. 2021, 13, 139.
Liang, G. J.; Wang, Y. L.; Huang, Z. D.; Mo, F. N.; Li, X. L.; Yang, Q.; Wang, D. H.; Li, H. F.; Chen, S. M.; Zhi, C. Initiating hexagonal MoO3 for superb-stable and Fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 2020, 32, 1907802.
Zhang, X. K.; Xia, M. T.; Liu, T. T.; Peng, N.; Yu, H. X.; Zheng, R. T.; Zhang, L. Y.; Shui, M.; Shu, J. Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. 2021, 421, 127767.
Song, Y.; Pan, Q.; Lv, H. Z.; Yang, D.; Qin, Z. M.; Zhang, M. Y.; Sun, X. Q.; Liu, X. X. Ammonium-ion storage using electrodeposited manganese oxides. Angew. Chem., Int. Ed. 2021, 60, 5718–5722.
Zhang, Y. Z.; Liang, J. L.; Huang, Z. H.; Wang, Q.; Zhu, G. Y.; Dong, S. Y.; Liang, H. F.; Dong, X. C. Ionically conductive tunnels in h-WO3 enable high-rate NH4+ storage. Adv. Sci. 2022, 9, 2105158.
Ma, Y.; Sun, T. J.; Nian, Q. S.; Zheng, S. B.; Ma, T.; Wang, Q. R.; Du, H. H.; Tao, Z. Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Res. 2022, 15, 2047–2051.
Tian, Z. N.; Kale, V. S.; Wang, Y. Z.; Kandambeth, S.; Czaban-Jóźwiak, J.; Shekhah, O.; Eddaoudi, M.; Alshareef, H. N. High-capacity NH4+ charge storage in covalent organic frameworks. J. Am. Chem. Soc. 2021, 143, 19178–19186.
Pan, Q.; Dong, R.; Lv, H. Z.; Sun, X. Q.; Song, Y.; Liu, X. X. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chem. Eng. J. 2021, 419, 129491.
Li, Z. H.; Duan, H. H.; Shao, M. F.; Li, J. B.; O'Hare, D.; Wei, M.; Wang, Z. L. Ordered-vacancy-induced cation intercalation into layered double hydroxides: A general approach for high-performance supercapacitors. Chem 2018, 4, 2168–2179.
Chao, D. L.; Zhu, C. R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H. F.; Wang, J.; Wang, R. M.; Zhang, H. et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 2018, 30, 1803181.
Zhang, F.; Liu, T. Y.; Li, M. Y.; Yu, M. H.; Luo, Y. X.; Tong, Y.; Li, Y. Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 2017, 17, 3097–3104.
Han, J.; Zarrabeitia, M.; Mariani, A.; Kuenzel, M.; Mullaliu, A.; Varzi, A.; Passerini, S. Concentrated electrolytes enabling stable aqueous ammonium-ion batteries. Adv. Mater. 2022, 34, 2201877.
Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.
Wu, X. Y.; Qi, Y. T.; Hong, J. J.; Li, Z. F.; Hernandez, A. S.; Ji, X. L. Rocking-chair ammonium-ion battery: A highly reversible aqueous energy storage system. Angew. Chem., Int. Ed. 2017, 56, 13026–13030.
Holoubek, J. J.; Jiang, H.; Leonard, D.; Qi, Y. T.; Bustamante, G. C.; Ji, X. L. Amorphous titanic acid electrode: Its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 2018, 54, 9805–9808.
Xu, W. W.; Zhang, L.; Zhao, K. N.; Sun, X. X.; Wu, Q. L. Layered ferric vanadate nanosheets as a high-rate NH4+ storage electrode. Electrochimi. Acta 2020, 360, 137008.
Xia, M. T.; Zhang, X. K.; Yu, H. X.; Yang, Z. W.; Chen, S.; Zhang, L. Y.; Shui, M.; Xie, Y.; Shu, J. Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. 2021, 421, 127759.
Li, H.; Yang, J.; Cheng, J. L.; He, T.; Wang, B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy 2020, 68, 104369.
Wu, X. Y.; Xu, Y. K.; Jiang, H.; Wei, Z. X.; Hong, J. J.; Hernandez, A. S.; Du, F.; Ji, X. L. NH4+ topotactic insertion in berlin green: An exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 3077–3083.
Wang, P.; Zhang, Y. F.; Feng, Z. Y.; Liu, Y. Y.; Meng, C. G. A dual-polymer strategy boosts hydrated vanadium oxide for ammonium-ion storage. J. Colloid Interface Sci. 2022, 606, 1322–1332.
Yan, H.; Mu, X. J.; Song, Y.; Qin, Z. M.; Guo, D.; Sun, X. Q.; Liu, X. X. Protonating imine sites of polyaniline for aqueous zinc batteries. Chem. Commun. 2022, 58, 1693–1696.
Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.
Wu, Z. Y.; Lu, C. J.; Ye, F.; Zhang, L.; Jiang, L.; Liu, Q.; Dong, H. L.; Sun, Z. M.; Hu, L. F. Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2106816.
Chao, D. L.; Zhou, W. H.; Ye, C.; Zhang, Q. H.; Chen, Y. G.; Gu, L.; Davey, K.; Qiao, S. Z. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem., Int. Ed. 2019, 58, 7823–7828.
Jayachandran, M.; Rose, A.; Maiyalagan, T.; Poongodi, N.; Vijayakumar, T. Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim. Acta 2021, 366, 137412.
Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1. 5 V:The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 21, 1400930.
Meng, J. M.; Song, Y.; Qin, Z. M.; Wang, Z. H.; Mu, X. J.; Wang, J.; Liu, X. X. Cobalt-nickel double hydroxide toward mild aqueous zinc-ion batteries. Adv. Funct. Mater. 2022, 32, 2204026.