AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrochemically activated nickel-cobalt double hydroxide for aqueous ammonium-zinc hybrid battery

Qing Pan1,§Peng Hei1,§Yu Song1( )Jianming Meng1Chang Liu1Xiao-Xia Liu1,2,3( )
Department of Chemistry, Northeastern University, Shenyang 110819, China
National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China

§ Qing Pan and Peng Hei contributed equally to this work.

Show Author Information

Graphical Abstract

The electrochemical NH4+ storage properties of an amorphous nickel-cobalt double hydroxide material (A-NiCo-DH) was studied in neutral electrolyte for the first time. The introduced H vacancies in A-NiCo-DH lead to the enhanced electrochemical activity.

Abstract

Aqueous rechargeable ammonium-ion (NH4+) batteries (AAIBs) with ammonium ions as charge carriers possess many advantages, yet the relatively low discharge capacities (e.g., < 200 mAh·g−1) of the reported NH4+ host materials hinder the development of AAIBs. Herein, we study the NH4+ storage properties of an electrochemically activated NiCo double hydroxide (A-NiCo-DH) in neutral ammonium acetate electrolyte for the first time. The activation process extracts the interlayer anions (NO3) from the host material, providing additional cation accommodation sites for charge storage. The introduced H vacancies in A-NiCo-DH could activate the O sites, leading to the enhanced cation adsorption capability for the electrode. Therefore, A-NiCo-DH exhibits a high discharge capacity of 280.6 mAh·g−1 at 0.72 A·g−1 with good rate capability. Spectroscopy studies suggest A-NiCo-DH experiences a NH4+/H+ coinsertion mechanism. A NH4+-Zn hybrid cell is assembled using A-NiCo-DH as the cathode and Zn foil as the anode, respectively. The device delivers an energy density of 306 Wh·kg−1 at the power density of 745.8 W·kg−1 (based on the active mass of A-NiCo-DH). This work provides a new NH4+ storage material and would push forward the development of aqueous NH4+-based batteries.

Electronic Supplementary Material

Download File(s)
12274_2022_5021_MOESM1_ESM.pdf (970.7 KB)

References

[1]

Ruan, P. C.; Liang, S. Q.; Lu, B. A.; Fan, H. J.; Zhou, J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem., Int. Ed. 2022, 61, e202200598.

[2]

Yan, L.; Huang, J. H.; Guo, Z. W.; Dong, X. L.; Wang, Z.; Wang, Y. G. Solid-state proton battery operated at ultralow temperature. ACS Energy Lett. 2020, 5, 685–691.

[3]

Ma, L. T.; Chen, S. M.; Li, H. F.; Ruan, Z. H.; Tang, Z. J.; Liu, Z. X.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A. et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(III) rich-electrode. Energy Environ. Sci. 2018, 11, 2521–2530.

[4]

Li, X.; Chen, Z. J.; Yang, Y. Q.; Liang, S. Q.; Lu, B. G.; Zhou, J. The phosphate cathodes for aqueous zinc-ion batteries. Inorg. Chem. Front. 2022, 9, 3986–3998.

[5]

Sun, S.; Rao, D. W.; Zhai, T.; Liu, Q.; Zhang, H. S.; Xia, H. Synergistic interface-assisted electrode–electrolyte coupling toward advanced charge storage. Adv. Mater. 2020, 27, 2005344.

[6]

Liu, Z. X.; Yang, Y. Q.; Liang, S. Q.; Lu, B. A.; Zhou, J. pH-buffer contained electrolyte for self-adjusted cathode-free Zn-MnO2 batteries with coexistence of dual mechanisms. Small Struct. 2021, 2, 2100119.

[7]

Sun, S.; Liu, B.; Zhang, H. S.; Guo, Q. B.; Xia, Q. Y.; Zhai, T.; Xia, H. Boosting energy storage via confining soluble redox species onto solid-liquid Interface. Adv. Energy Mater. 2021, 24, 2003599.

[8]

Liu, Z. X.; Qin, L. P.; Lu, B. G.; Wu, X. W.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous Mn2+/MnO2-based batteries. ChemSusChem 2022, 15, e202200348.

[9]

Dong, S. Y.; Shin, W.; Jiang, H.; Wu, X. Y.; Li, Z. F.; Holoubek, J.; Stickle, W. F.; Key, B.; Liu, C.; Lu, J. et al. Ultra-fast NH4+ storage: Strong H bonding between NH4+ and Bi-layered V2O5. Chem 2019, 5, 1537–1551.

[10]

Zhang, X. K.; Xia, M. T.; Yu, H. X.; Zhang, J. W.; Yang, Z. W.; Zhang, L. Y.; Shu, J. Hydrogen bond-assisted ultra-stable and fast aqueous NH4+ storage. Nano-Micro Lett. 2021, 13, 139.

[11]

Liang, G. J.; Wang, Y. L.; Huang, Z. D.; Mo, F. N.; Li, X. L.; Yang, Q.; Wang, D. H.; Li, H. F.; Chen, S. M.; Zhi, C. Initiating hexagonal MoO3 for superb-stable and Fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 2020, 32, 1907802.

[12]

Zhang, X. K.; Xia, M. T.; Liu, T. T.; Peng, N.; Yu, H. X.; Zheng, R. T.; Zhang, L. Y.; Shui, M.; Shu, J. Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chem. Eng. J. 2021, 421, 127767.

[13]

Song, Y.; Pan, Q.; Lv, H. Z.; Yang, D.; Qin, Z. M.; Zhang, M. Y.; Sun, X. Q.; Liu, X. X. Ammonium-ion storage using electrodeposited manganese oxides. Angew. Chem., Int. Ed. 2021, 60, 5718–5722.

[14]

Zhang, Y. Z.; Liang, J. L.; Huang, Z. H.; Wang, Q.; Zhu, G. Y.; Dong, S. Y.; Liang, H. F.; Dong, X. C. Ionically conductive tunnels in h-WO3 enable high-rate NH4+ storage. Adv. Sci. 2022, 9, 2105158.

[15]

Ma, Y.; Sun, T. J.; Nian, Q. S.; Zheng, S. B.; Ma, T.; Wang, Q. R.; Du, H. H.; Tao, Z. Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Res. 2022, 15, 2047–2051.

[16]

Tian, Z. N.; Kale, V. S.; Wang, Y. Z.; Kandambeth, S.; Czaban-Jóźwiak, J.; Shekhah, O.; Eddaoudi, M.; Alshareef, H. N. High-capacity NH4+ charge storage in covalent organic frameworks. J. Am. Chem. Soc. 2021, 143, 19178–19186.

[17]

Pan, Q.; Dong, R.; Lv, H. Z.; Sun, X. Q.; Song, Y.; Liu, X. X. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chem. Eng. J. 2021, 419, 129491.

[18]

Li, Z. H.; Duan, H. H.; Shao, M. F.; Li, J. B.; O'Hare, D.; Wei, M.; Wang, Z. L. Ordered-vacancy-induced cation intercalation into layered double hydroxides: A general approach for high-performance supercapacitors. Chem 2018, 4, 2168–2179.

[19]

Chao, D. L.; Zhu, C. R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H. F.; Wang, J.; Wang, R. M.; Zhang, H. et al. A high-rate and stable quasi-solid-state zinc-ion battery with novel 2D layered zinc orthovanadate array. Adv. Mater. 2018, 30, 1803181.

[20]

Zhang, F.; Liu, T. Y.; Li, M. Y.; Yu, M. H.; Luo, Y. X.; Tong, Y.; Li, Y. Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 2017, 17, 3097–3104.

[21]

Han, J.; Zarrabeitia, M.; Mariani, A.; Kuenzel, M.; Mullaliu, A.; Varzi, A.; Passerini, S. Concentrated electrolytes enabling stable aqueous ammonium-ion batteries. Adv. Mater. 2022, 34, 2201877.

[22]

Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.

[23]

Wu, X. Y.; Qi, Y. T.; Hong, J. J.; Li, Z. F.; Hernandez, A. S.; Ji, X. L. Rocking-chair ammonium-ion battery: A highly reversible aqueous energy storage system. Angew. Chem., Int. Ed. 2017, 56, 13026–13030.

[24]

Holoubek, J. J.; Jiang, H.; Leonard, D.; Qi, Y. T.; Bustamante, G. C.; Ji, X. L. Amorphous titanic acid electrode: Its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 2018, 54, 9805–9808.

[25]

Xu, W. W.; Zhang, L.; Zhao, K. N.; Sun, X. X.; Wu, Q. L. Layered ferric vanadate nanosheets as a high-rate NH4+ storage electrode. Electrochimi. Acta 2020, 360, 137008.

[26]

Xia, M. T.; Zhang, X. K.; Yu, H. X.; Yang, Z. W.; Chen, S.; Zhang, L. Y.; Shui, M.; Xie, Y.; Shu, J. Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chem. Eng. J. 2021, 421, 127759.

[27]

Li, H.; Yang, J.; Cheng, J. L.; He, T.; Wang, B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy 2020, 68, 104369.

[28]

Wu, X. Y.; Xu, Y. K.; Jiang, H.; Wei, Z. X.; Hong, J. J.; Hernandez, A. S.; Du, F.; Ji, X. L. NH4+ topotactic insertion in berlin green: An exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 3077–3083.

[29]

Wang, P.; Zhang, Y. F.; Feng, Z. Y.; Liu, Y. Y.; Meng, C. G. A dual-polymer strategy boosts hydrated vanadium oxide for ammonium-ion storage. J. Colloid Interface Sci. 2022, 606, 1322–1332.

[30]

Yan, H.; Mu, X. J.; Song, Y.; Qin, Z. M.; Guo, D.; Sun, X. Q.; Liu, X. X. Protonating imine sites of polyaniline for aqueous zinc batteries. Chem. Commun. 2022, 58, 1693–1696.

[31]

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

[32]

Wu, Z. Y.; Lu, C. J.; Ye, F.; Zhang, L.; Jiang, L.; Liu, Q.; Dong, H. L.; Sun, Z. M.; Hu, L. F. Bilayered VOPO4·2H2O nanosheets with high-concentration oxygen vacancies for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 2021, 31, 2106816.

[33]

Chao, D. L.; Zhou, W. H.; Ye, C.; Zhang, Q. H.; Chen, Y. G.; Gu, L.; Davey, K.; Qiao, S. Z. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew. Chem., Int. Ed. 2019, 58, 7823–7828.

[34]

Jayachandran, M.; Rose, A.; Maiyalagan, T.; Poongodi, N.; Vijayakumar, T. Effect of various aqueous electrolytes on the electrochemical performance of α-MnO2 nanorods as electrode materials for supercapacitor application. Electrochim. Acta 2021, 366, 137412.

[35]

Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1. 5 V:The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 21, 1400930.

[36]

Meng, J. M.; Song, Y.; Qin, Z. M.; Wang, Z. H.; Mu, X. J.; Wang, J.; Liu, X. X. Cobalt-nickel double hydroxide toward mild aqueous zinc-ion batteries. Adv. Funct. Mater. 2022, 32, 2204026.

Nano Research
Pages 2495-2501
Cite this article:
Pan Q, Hei P, Song Y, et al. Electrochemically activated nickel-cobalt double hydroxide for aqueous ammonium-zinc hybrid battery. Nano Research, 2023, 16(2): 2495-2501. https://doi.org/10.1007/s12274-022-5021-z
Topics:

688

Views

14

Crossref

11

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 01 August 2022
Revised: 03 September 2022
Accepted: 05 September 2022
Published: 21 October 2022
© Tsinghua University Press 2022
Return