Article Link
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Abstract
Keywords
Electronic Supplementary Material
References
Show full outline
Hide outline
Research Article

Extraordinary thermal conductivity of polyvinyl alcohol composite by aligning densified carbon fiber via magnetic field

Xiaoxiao Guo1Shujian Cheng1Bo Yan1Yile Li1Yinghui Zhou1,2Weiwei Cai1,2Yufeng Zhang1,2()Xue-ao Zhang1,2()
College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
Jiujiang research institute of Xiamen University, Jiujiang 360404, China
Show Author Information

Graphical Abstract

View original image Download original image
The vertically aligned mesophase pitch-based carbon fibers/polyvinyl alcohol (VAMPCF/PVA) composite with an ultrahigh through-plane thermal conductivity of 86 W/(m·K) is obtained by aligning mesophase pitch-based carbon fibers (MPCFs) in PVA via magnetic field. The temperature of the high-power light-emitting diode (LED) lamps reduces 18 °C by using VAMPCF/PVA composites as thermal interface materials (TIMs).

Abstract

Thermal interface materials (TIMs) with high through-plane thermal conductivity are urgently desired to avoid overheating of high-power density electronics. Introducing and aligning fillers in polymer matrixes via magnetic field is a promising method to improve the thermal conductivity of the polymer. However, either the fillers need to be modified with magnetic particles or a strong magnetic field is needed for good alignment in high filler content. This prevents further improvement of the through-plane thermal conductivity. Herein, mesophase pitch-based carbon fibers (MPCFs) with a content as high as 76 wt.% are aligned vertically in water-soluble polyvinyl alcohol (PVA) under a low magnetic field (~ 0.4 T), forming a vertically aligned MPCF (VAMPCF)/PVA composite with an extraordinary through-plane thermal conductivity of 86 W/(m·K), which is higher than that of many alloys. In addition, both theoretical and experimental results demonstrate that the critical intensity of the magnetic field needed for good alignment of the fillers depends on their size and magnetic susceptibility. Furthermore, the water solubility of PVA makes it easy to recycle MPCFs. This study offers an inspired venue to develop excellent and eco-friendly TIMs to meet ever increasing demand in heat dissipation for electronics.

Electronic Supplementary Material

Video
12274_2022_5023_MOESM2_ESM.mp4
Download File(s)
12274_2022_5023_MOESM1_ESM.pdf (497.6 KB)

References

[1]

Loeblein, M.; Tsang, S. H.; Pawlik, M.; Phua, E. J. R.; Yong, H.; Zhang, X. W.; Gan, C. L.; Teo, E. H. T. High-density 3D-boron nitride and 3D-graphene for high-performance nano-thermal interface material. ACS Nano 2017, 11, 2033–2044.

[2]

Yan, Q. W.; Alam, F. E.; Gao, J. Y.; Dai, W.; Tan, X.; Lv, L.; Wang, J. J.; Zhang, H.; Chen, D.; Nishimura, K. et al. Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling. Adv. Funct. Mater. 2021, 31, 2104062.

[3]

Uetani, K.; Ata, S.; Tomonoh, S.; Yamada, T.; Yumura, M.; Hata, K. Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv. Mater. 2014, 26, 5857–5862.

[4]

Ohashi, M.; Kawakami, S.; Yokogawa, Y.; Lai, G. C. Spherical aluminum nitride fillers for heat-conducting plastic packages. J. Am. Ceram. Soc. 2005, 88, 2615–2618.

[5]

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

[6]

Yang, W.; Bai, H. X.; Jiang, B.; Wang, C. N.; Ye, W. M.; Li, Z. X.; Xu, C.; Wang, X. B.; Li, Y. F. Flexible and densified graphene/waterborne polyurethane composite film with thermal conducting property for high performance electromagnetic interference shielding. Nano Res., 2022, 11, 9926–9935.

[7]

Lian, G.; Tuan, C. C.; Li, L. Y.; Jiao, S. L.; Wang, Q. L.; Moon, K. S.; Cui, D. L.; Wong, C. P. Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem. Mater. 2016, 28, 6096–6104.

[8]

Han, D.; Zhao, Y. H.; Zhang, Y. F.; Bai, S. L. Vertically and compactly rolled-up reduced graphene oxide film/epoxy composites: A two-stage reduction method for graphene-based thermal interfacial materials. RSC Adv. 2015, 5, 94426–94435.

[9]

Jang, W.; Chen, Z.; Bao, W. Z.; Lau, C. N.; Dames, C. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 2010, 10, 3909–3913.

[10]

Qi, G. Q.; Yang, J.; Bao, R. Y.; Xia, D. Y.; Cao, M.; Yang, W.; Yang, M. B.; Wei, D. C. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 2017, 10, 802–813.

[11]

Bo, Z.; Yang, Y.; Chen, J. H.; Yu, K. H.; Yan, J. H.; Cen, K. F. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphenenanosheets. Nanoscale 2013, 5, 5180–5204.

[12]

Li, M. H.; Ali, Z.; Wei, X. Z.; Li, L. H.; Song, G. C.; Hou, X.; Do, H.; Greer, J. C.; Pan, Z. B.; Lin, C. T. et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites. Compos. Part B:Eng. 2021, 208, 108599.

[13]

Ma, J. K.; Shang, T. Y.; Ren, L. L.; Yao, Y. M.; Zhang, T.; Xie, J. Q.; Zhang, B. T.; Zeng, X. L.; Sun, R.; Xu, J. B. et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem. Eng. J. 2020, 380, 122550.

[14]

Wu, Q.; Li, W. J.; Liu, C.; Xu, Y. W.; Li, G. G.; Zhang, H. X.; Huang, J. Y.; Miao, J. Y. Carbon fiber reinforced elastomeric thermal interface materials for spacecraft. Carbon 2022, 187, 432–438.

[15]

Wu, Q.; Miao, J. Y.; Li, W. J.; Yang, Q.; Huang, Y. P.; Fu, Z. D.; Yang, L. High-performance thermal interface materials with magnetic aligned carbon fibers. Materials 2022, 15, 735.

[16]

Yuan, F.; Jiao, W. C.; Yang, F.; Liu, W. B.; Xu, Z. H.; Wang, R. G. Surface modification and magnetic alignment of hexagonal boron nitride nanosheets for highly thermally conductive composites. RSC Adv. 2017, 7, 43380–43389.

[17]

Renteria, J.; Legedza, S.; Salgado, R.; Balandin, M. P.; Ramirez, S.; Saadah, M.; Kargar, F.; Balandin, A. A. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater. Des. 2015, 88, 214–221.

[18]

He, Y. X.; Yang, S.; Liu, H.; Shao, Q.; Chen, Q. Y.; Lu, C.; Jiang, Y. L.; Liu, C. T.; Guo, Z. H. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties. J. Colloid Interface Sci. 2018, 517, 40–51.

[19]

Huang, Y. F.; Jiao, W. C.; Niu, Y.; Ding, G. M.; Wang, R. G. Improving the mechanical properties of Fe3O4/carbon nanotube reinforced nanocomposites by a low-magnetic-field induced alignment. J. Polym. Eng. 2018, 38, 731–738.

[20]

Kim, K.; Kim, J. Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content. Compos. Part B:Eng. 2016, 93, 67–74.

[21]

Kimura, T.; Ago, H.; Tobita, M.; Ohshima, S.; Kyotani, M.; Yumura, M. Polymer composites of carbon nanotubes aligned by a magnetic field. Adv. Mater. 2002, 14, 1380–1383.

[22]

Ji, T. X.; Feng, Y. Y.; Qin, M.; Li, S. W.; Zhang, F.; Lv, F.; Feng, W. Thermal conductive and flexible silastic composite based on a hierarchical framework of aligned carbon fibers-carbon nanotubes. Carbon 2018, 131, 149–159.

[23]

Kim, K.; Kim, J. Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field. Int. J. Therm. Sci. 2016, 100, 29–36.

[24]

Wu, X. L.; Wang, H. T.; Wang, Z. A.; Xu, J. L.; Wu, Y. J.; Xue, R.; Cui, H. X.; Tian, C.; Wang, Y.; Huang, X. X. et al. Highly conductive thermal interface materials with vertically aligned graphite-nanoplatelet filler towards: High power density electronic device cooling. Carbon 2021, 182, 445–453.

[25]

Lin, F.; Niu, C.; Hu, J.; Wang, Z. M.; Bao, J. M. Graphene diamagnetism: Levitation, transport, rotation, and orientation alignment of graphene flakes in a magnetic field. IEEE Nanotechnol. Mag. 2020, 14, 14–22.

[26]

Hone, J.; Llaguno, M. C.; Nemes, N. M.; Johnson, A. T.; Fischer, J. E.; Walters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 2000, 77, 666–668.

[27]

Tian, B.; Lin, W. Y.; Zhuang, P. P.; Li, J. Z.; Shih, T. M.; Cai, W. W. Magnetically-induced alignment of graphene via Landau diamagnetism. Carbon 2018, 131, 66–71.

[28]

Xu, S. C.; Cheng, T.; Yan, Q. W.; Shen, C.; Yu, Y.; Lin, C. T.; Ding, F.; Zhang, J. Chloroform-assisted rapid growth of vertical graphene array and its application in thermal interface materials. Adv. Sci. 2022, 9, 2200737.

[29]

Chung, S. H.; Kim, H.; Jeong, S. W. Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment. Carbon 2018, 140, 24–29.

[30]

Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G.; Endo, M.; Nishimura, Y.; Hiraoka, T.; Tamaki, N. Magnetic alignment of mesophase pitch-based carbon fibers. Appl. Phys. Lett. 1996, 69, 430–432.

[31]

Lin, F.; Zhu, Z.; Zhou, X. F.; Qiu, W. L.; Niu, C.; Hu, J.; Dahal, K.; Wang, Y. N.; Zhao, Z. H.; Ren, Z. F. et al. Orientation control of graphene flakes by magnetic field: Broad device applications of macroscopically aligned graphene. Adv. Mater. 2017, 29, 1604453.

[32]

Sepioni, M.; Nair, R. R.; Rablen, S.; Narayanan, J.; Tuna, F.; Winpenny, R.; Geim, A. K.; Grigorieva, I. V. Limits on intrinsic magnetism in graphene. Phys. Rev. Lett. 2010, 105, 207205.

[33]

Niu, C.; Lin, F.; Wang, Z. M.; Bao, J. M.; Hu, J. Graphene levitation and orientation control using a magnetic field. J. Appl. Phys. 2018, 123, 044302.

[34]

Nguyen, J.; Contera, S.; Llorente García, I. Magneto-electrical orientation of lipid-coated graphitic micro-particles in solution. RSC Adv. 2016, 6, 46643–46653.

[35]

Nakano, Y.; Matsuo, M. Orientation behavior of carbon fiber axes in polymer solutions under magnetic field estimated in terms of orientation distribution function. J. Phys. Chem. C 2008, 112, 15611–15622.

[36]

Matsuo, M.; Takemoto, Y.; Zhang, R.; Liu, J.; Chen, R.; Bin, Y. Z. Orientation of carbon fiber axes in polymer solutions under magnetic field evaluated in terms of orientation distribution of the chain axes of graphite with respect to the carbon fiber axis. J. Phys. Chem. B 2013, 117, 2516–2526.

[37]

Ma, H. Q.; Gao, B.; Wang, M. Y.; Feng, Y. K. Vertical alignment of carbon fibers under magnetic field driving to enhance the thermal conductivity of silicone composites. Polym. Adv. Technol. 2021, 32, 4318–4325.

[38]

Lin, F.; Yang, G.; Niu, C.; Wang, Y. N.; Zhu, Z.; Luo, H. K.; Dai, C.; Mayerich, D.; Hu, Y. D.; Hu, J. et al. Planar alignment of graphene sheets by a rotating magnetic field for full exploitation of graphene as a 2D material. Adv. Funct. Mater. 2018, 28, 1805255.

[39]

Li, Z. L.; Chen, L. L.; Meng, S.; Guo, L. W.; Huang, J.; Liu, Y.; Wang, W. J.; Chen, X. L. Field and temperature dependence of intrinsic diamagnetism in graphene: Theory and experiment. Phys. Rev. B 2015, 91, 094429.

[40]

Bustamante, J. V.; Wu, N. J.; Fermon, C.; Pannetier-Lecoeur, M.; Wakamura, T.; Watanabe, K.; Taniguchi, T.; Pellegrin, T.; Bernard, A.; Daddinounou, S. et al. Detection of graphene's divergent orbital diamagnetism at the Dirac point. Science 2021, 374, 1399–1402.

[41]

Qin, X. Y.; Lu, Y. G.; Xiao, H.; Wen, Y.; Yu, T. A comparison of the effect of graphitization on microstructures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon 2012, 50, 4459–4469.

[42]

Erb, R. M.; Libanori, R.; Rothfuchs, N.; Studart, A. R. Composites reinforced in three dimensions by using low magnetic fields. Science 2012, 335, 199–204.

[43]

Fischbach, D. B.; Gilbert, D. W. Diamagnetic characterization of carbon fibres from pitch mesophase, pitch and polyacrylonitrile. J. Mater. Sci. 1979, 14, 1586–1592.

[44]

Yan, Q. W.; Dai, W.; Gao, J. Y.; Tan, X.; Lv, L.; Ying, J. F.; Lu, X. X.; Lu, J. B.; Yao, Y. G.; Wei, Q. P. et al. Ultrahigh-aspect-ratio boron nitride nanosheets leading to superhigh in-plane thermal conductivity of foldable heat spreader. ACS Nano 2021, 15, 6489–6498.

[45]

Zeng, X. L.; Sun, J. J.; Yao, Y. M.; Sun, R.; Xu, J. B.; Wong, C. P. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 2017, 11, 5167–5178.

[46]

Qiu, W. K.; Lin, W. G.; Tuersun, Y.; Ou, M. L.; Chu, S. Ultra-flexible, dielectric, and thermostable boron nitride-graphene fluoride hybrid films for efficient thermal management. Adv. Mater. Interfaces 2021, 8, 2002187.

[47]

Klemens, P. G. Theory of the a-plane thermal conductivity of graphite. J. Wide Bandgap Mater. 2000, 7, 332–339.

[48]

Gao, J. Y.; Yan, Q. W.; Lv, L.; Tan, X.; Ying, J. F.; Yang, K.; Yu, J. H.; Du, S. Y.; Wei, Q. P.; Xiang, R. et al. Lightweight thermal interface materials based on hierarchically structured graphene paper with superior through-plane thermal conductivity. Chem. Eng. J. 2021, 419, 129609.

[49]

Dai, W.; Lv, L.; Lu, J. B.; Hou, H.; Yan, Q. W.; Alam, F. E.; Li, Y. F.; Zeng, X. L.; Yu, J. H.; Wei, Q. P. et al. A paper-like inorganic thermal interface material composed of hierarchically structured graphene/silicon carbide nanorods. ACS Nano 2019, 13, 1547–1554.

[50]

Liu, P. F.; Li, X. F.; Min, P.; Chang, X. Y.; Shu, C.; Ding, Y.; Yu, Z. Z. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2021, 13, 22.

[51]

An, F.; Li, X. F.; Min, P.; Liu, P. F.; Jiang, Z. G.; Yu, Z. Z. Vertically aligned high-quality graphene foams for anisotropically conductive polymer composites with ultrahigh through-plane thermal conductivities. ACS Appl. Mater. Interfaces 2018, 10, 17383–17392.

[52]

Guo, L. C.; Zhang, Z. Y.; Li, M. H.; Kang, R. Y.; Chen, Y. P.; Song, G. C.; Han, S. T.; Lin, C. T.; Jiang, N.; Yu, J. H. Extremely high thermal conductivity of carbon fiber/epoxy with synergistic effect of MXenes by freeze-drying. Compos. Commun. 2020, 19, 134–141.

[53]

Yu, Z. F.; Wei, S.; Guo, J. D. Fabrication of aligned carbon-fiber/polymer TIMs using electrostatic flocking method. J. Mater. Sci. :Mater. Electron. 2019, 30, 10233–10243.

Nano Research
Pages 2572-2578
Cite this article:
Guo X, Cheng S, Yan B, et al. Extraordinary thermal conductivity of polyvinyl alcohol composite by aligning densified carbon fiber via magnetic field. Nano Research, 2023, 16(2): 2572-2578. https://doi.org/10.1007/s12274-022-5023-x
Topics:
Metrics & Citations  
Article History
Copyright
Return