Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In electrocatalytic water splitting, low-cost dual-functional catalysts can not only reduce costs but also avoid cross-contamination of cathode and anode. However, the orderly aggregation of active sites for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) into a specific catalyst is very challenging. In this study, a Co/Fe3O4 Janus heterojunction supported on carbon fiber paper (J-CoFe-CFP) is designed and successfully synthesized. Generally, Co-Fe oxides have preferable OER activity but weak HER activity. However, in J-CoFe-CFP, due to the intense and special electronic interaction of different substances (Co and Fe3O4) in the Janus heterogeneous interface, a huge number of tidy high-quality HER and OER active sites are uniformly distributed on the interface simultaneously, which endows the catalyst with both excellent HER and OER performance. In HER, the overpotential @10 mA·cm−2 (ηHER) is only 53.9 mV, and the Tafel slope is 43.7 mV·dec−1. In OER, the η is 272 mV, and the Tafel slope is 50.2 mV·dec−1, much lower than those of RuO2/CFP. In the J-CoFe-CFP||J-CoFe-CFP two-electrode system, the required voltage is only 1.26 V at the beginning and 1.56 V@10 mA·cm−2, much lower than those of RuO2/CFP||20% Pt/C/CFP. This work provides a Janus heterojunction pathway for bifunctional water electrolysis catalysts.
Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1−x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126, 13406–13413.
Liu, Y. Q.; Wang, L.; Feng, H. X.; Ren, X. T.; Ji, J. J.; Bai, F.; Fan, H. Y. Microemulsion-assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett. 2019, 19, 2614–2619.
Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.
Chen, Y.; Rao, Y.; Wang, R. Z.; Yu, Y. N.; Li, Q. L.; Bao, S. J.; Xu, M. W.; Yue, Q.; Zhang, Y. N.; Kang, Y. J. Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Res. 2020, 13, 2407–2412.
Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.
Ran, J. R.; Qu, J. T.; Zhang, H. P.; Wen, T.; Wang, H. L.; Chen, S. M.; Song, L.; Zhang, X. L.; Jing, L. Q.; Zheng, R. K. et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 2019, 9, 1803402.
Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.
Hu, Q.; Li, G. M.; Huang, X. W.; Wang, Z. Y.; Yang, H. P.; Zhang, Q. L.; Liu, J. H.; He, C. X. Electronic structure engineering of single atomic Ru by Ru nanoparticles to enable enhanced activity for alkaline water reduction. J. Mater. Chem. A 2019, 7, 19531–19538.
Zhuang, L. Z.; Jia, Y.; He, T. W.; Du, A. J.; Yan, X. C.; Ge, L.; Zhu, Z. H.; Yao, X. D. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509–3518.
Sun, K. A.; Liu, Y. Q.; Pan, Y.; Zhu, H. Y.; Zhao, J. C.; Zeng, L. Y.; Liu, Z.; Liu, C. G. Targeted bottom-up synthesis of 1T-phase MoS2 arrays with high electrocatalytic hydrogen evolution activity by simultaneous structure and morphology engineering. Nano Res. 2018, 11, 4368–4379.
Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.
Yuan, Q. C.; Liu, D.; Zhang, N.; Ye, W.; Ju, H. X.; Shi, L.; Long, R.; Zhu, J. F.; Xiong, Y. J. Noble-metal-free Janus-like structures by cation exchange for Z-scheme photocatalytic water splitting under broadband light irradiation. Angew. Chem., Int. Ed. 2017, 56, 4206–4210.
Zhou, X. M.; Liu, N.; Schmidt, J.; Kahnt, A.; Osvet, A.; Romeis, S.; Zolnhofer, E. M.; Marthala, V. R. R.; Guldi, D. M.; Peukert, W. et al. Noble-metal-free photocatalytic hydrogen evolution activity: The impact of ball milling anatase nanopowders with TiH2. Adv. Mater. 2017, 29, 1604747.
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.
Hu, Q.; Li, G. D.; Liu, X. F.; Zhu, B.; Li, G. M.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Coupling pentlandite nanoparticles and dual-doped carbon networks to yield efficient and stable electrocatalysts for acid water oxidation. J. Mater. Chem. A 2019, 7, 461–468.
Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.
Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.
Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.
Liu, Y.; Feng, Q. G.; Liu, W.; Li, Q.; Wang, Y. C.; Liu, B.; Zheng, L. R.; Wang, W.; Huang, L.; Chen, L. M. et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641.
Guo, Y. N.; Tang, J.; Wang, Z. L.; Kang, Y. M.; Bando, Y.; Yamauchi, Y. Elaborately assembled core–shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 2018, 47, 494–502.
Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.
Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.
Hu, Q.; Li, G. M.; Han, Z.; Wang, Z. Y.; Huang, X. W.; Yang, H. P.; Zhang, Q. L.; Liu, J. H.; He, C. X. Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. J. Mater. Chem. A 2019, 7, 14380–14390.
He, Q.; Wan, Y. Y.; Jiang, H. L.; Wu, C. Q.; Sun, Z. T.; Chen, S. M.; Zhou, Y.; Chen, H. P.; Liu, D. B.; Haleem, Y. A. et al. High-metallic-phase-concentration Mo1−xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts. Nano Res. 2018, 11, 1687–1698.
Li, M. F.; Duanmu, K. N.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.
Chen, S.; Chen, Z. N.; Fang, W. H.; Zhuang, W.; Zhang, L.; Zhang, J. Ag10Ti28-Oxo cluster containing single-atom silver sites: Atomic structure and synergistic electronic properties. Angew. Chem., Int. Ed. 2019, 58, 10932–10935.
Hong, J. H.; Jin, C. H.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 2017, 29, 1606434.
Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.
Liu, W. L.; Du, K. Z.; Liu, L.; Zhang, J. X.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. One-step electroreductively deposited iron–cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting. Nano Energy 2017, 38, 576–584.
Zhou, J.; Dou, Y. B.; He, T.; Zhou, A. W.; Kong, X. J.; Wu, X. Q.; Liu, T. X.; Li, J. R. Revealing the effect of anion-tuning in bimetallic chalcogenides on electrocatalytic overall water splitting. Nano Res. 2021, 14, 4548–4555.
Ravetz, B. D.; Pun, A. B.; Churchill, E. M.; Congreve, D. N.; Rovis, T.; Campos, L. M. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 2019, 565, 343–346.
Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bézard, B.; Strobel, D. F.; Conrath, B. J.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K. et al. Jupiter’s atmospheric composition from the Cassini thermal infrared spectroscopy experiment. Science 2004, 305, 1582–1586.
Guo, Y. N.; Zhou, X.; Tang, J.; Tanaka, S.; Kaneti, Y. V.; Na, J.; Jiang, B.; Yamauchi, Y.; Bando, Y.; Sugahara, Y. Multiscale structural optimization: Highly efficient hollow iron-doped metal sulfide heterostructures as bifunctional electrocatalysts for water splitting. Nano Energy 2020, 75, 104913.
Won, Y. Y.; Meeker, S. P.; Trappe, V.; Weitz, D. A.; Diggs, N. Z.; Emert, J. I. Effect of temperature on carbon-black agglomeration in hydrocarbon liquid with adsorbed dispersant. Langmuir 2005, 21, 924–932.
Shi, Q.; Li, S. S.; Tian, S. H.; Huang, Z. L.; Yang, Y.; Liao, Z. W.; Sun, J. Y.; Wang, J. D.; Yang, Y. R. Investigating agglomeration behaviors in high temperature gas–solid fluidized beds with liquid injection. Ind. Eng. Chem. Res. 2018, 57, 5482–5494.
Varga, E.; Pusztai, P.; Oszkó, A.; Baán, K.; Erdőhelyi, A.; Kónya, Z.; Kiss, J. Stability and temperature-induced agglomeration of Rh nanoparticles supported by CeO2. Langmuir 2016, 32, 2761–2770.
Dong, J. X.; Gao, Z. F.; Zhang, Y.; Li, B. L.; Li, N. B.; Luo, H. Q. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction. Biosens. Bioelectron. 2017, 91, 155–161.
Finney, E. E.; Finke, R. G. The four-step, double-autocatalytic mechanism for transition-metal nanocluster nucleation, growth, and then agglomeration: Metal, ligand, concentration, temperature, and solvent dependency studies. Chem. Mater. 2008, 20, 1956–1970.
Kister, T.; Monego, D.; Mulvaney, P.; Widmer-Cooper, A.; Kraus, T. Colloidal stability of apolar nanoparticles: The role of particle size and ligand shell structure. ACS Nano 2018, 12, 5969–5977.
Chen, X. J.; Shi, R.; Chen, Q.; Zhang, Z. J.; Jiang, W. J.; Zhu, Y. F.; Zhang, T. R. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy 2019, 59, 644–650.
Xu, L.; Hu, Z. W.; Wang, L. L.; He, C. X.; Yu, S. H. Unconventional chemical graphitization and functionalization of graphene oxide toward nanocomposites by degradation of ZnSe0.5 hybrid nanobelts. Sci. China Mater. 2020, 63, 1878–1888.
Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.
Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.
Yang, M. X.; Feng, T. L.; Chen, Y. X.; Liu, J. J.; Zhao, X. H.; Yang, B. Synchronously integration of Co, Fe dual-metal doping in Ru@C and CDs for boosted water splitting performances in alkaline media. Appl. Catal. B: Environ. 2020, 267, 118657.
Han, S. C.; Hu, X. Y.; Yang, W.; Qian, Q. R.; Fang, X. S.; Zhu, Y. F. Constructing the band alignment of graphitic carbon nitride (g-C3N4)/copper(I) oxide (Cu2O) composites by adjusting the contact facet for superior photocatalytic activity. ACS Appl. Energy Mater. 2019, 2, 1803–1811.
Guo, X. W.; Chen, S. M.; Wang, H. J.; Zhang, Z. M.; Lin, H.; Song, L.; Lu, T. B. Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. J. Mater. Chem. A 2019, 7, 19831–19837.
Zhang, W. Y.; Peng, Q.; Shi, L. L.; Yao, Q. S.; Wang, X.; Yu, A. P.; Chen, Z. W.; Fu, Y. S. Merging single-atom-dispersed iron and graphitic carbon nitride to a joint electronic system for high-efficiency photocatalytic hydrogen evolution. Small 2019, 15, 1905166.
Wang, S. Y.; Li, J. Q.; Li, Q.; Bai, X. W.; Wang, J. L. Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation. Nanoscale 2020, 12, 364–371.
Chen, Z.; Zhao, J. X.; Cabrera, C. R.; Chen, Z. F. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019, 3, 1800368.
Wang, S. Y.; Jiang, S. P.; Wang, X. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim. Acta 2011, 56, 3338–3344.
Hao, R.; Chen, J. J.; Wang, Z. Y.; Zhang, J. J.; Gan, Q. M.; Wang, Y. F.; Li, Y. Z.; Luo, W.; Wang, Z. Q.; Yuan, H. M. et al. Iron polyphthalocyanine-derived ternary-balanced Fe3O4/Fe3N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction. Sci. China Mater. 2021, 64, 2987–2996.
Wu, S. S.; Zhu, Y. G.; Huo, Y. F.; Luo, Y. C.; Zhang, L. H.; Wan, Y.; Nan, B.; Cao, L. J.; Wang, Z. Y.; Li, M. C. et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 2017, 60, 654–663.
Yang, M. Y.; Shang, C. Q.; Li, F. F.; Liu, C.; Wang, Z. Y.; Gu, S.; Liu, D.; Cao, L. J.; Zhang, J. J.; Lu, Z. G. et al. Synergistic electronic and morphological modulation on ternary Co1−xVxP nanoneedle arrays for hydrogen evolution reaction with large current density. Sci. China Mater. 2021, 64, 880–891.