AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Janus heterostructure of cobalt and iron oxide as dual-functional electrocatalysts for overall water splitting

Xiaojie Li1,2,§Huike Zhang1,§Xuan Li1Qi Hu1Chen Deng1,2Xingxing Jiang1,2Hengpan Yang1Chuanxin He1( )
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China

§ Xiaojie Li and Huike Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

Self-supported Janus heterostructure of cobalt and iron oxide has been successfully fabricated, which can sequentially provide a large quantity of both high-quality hydrogen and oxygen evolution reaction active sites attached to the Janus interface.

Abstract

In electrocatalytic water splitting, low-cost dual-functional catalysts can not only reduce costs but also avoid cross-contamination of cathode and anode. However, the orderly aggregation of active sites for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) into a specific catalyst is very challenging. In this study, a Co/Fe3O4 Janus heterojunction supported on carbon fiber paper (J-CoFe-CFP) is designed and successfully synthesized. Generally, Co-Fe oxides have preferable OER activity but weak HER activity. However, in J-CoFe-CFP, due to the intense and special electronic interaction of different substances (Co and Fe3O4) in the Janus heterogeneous interface, a huge number of tidy high-quality HER and OER active sites are uniformly distributed on the interface simultaneously, which endows the catalyst with both excellent HER and OER performance. In HER, the overpotential @10 mA·cm−2 (ηHER) is only 53.9 mV, and the Tafel slope is 43.7 mV·dec−1. In OER, the η is 272 mV, and the Tafel slope is 50.2 mV·dec−1, much lower than those of RuO2/CFP. In the J-CoFe-CFP||J-CoFe-CFP two-electrode system, the required voltage is only 1.26 V at the beginning and 1.56 V@10 mA·cm−2, much lower than those of RuO2/CFP||20% Pt/C/CFP. This work provides a Janus heterojunction pathway for bifunctional water electrolysis catalysts.

Electronic Supplementary Material

Download File(s)
12274_2022_5024_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1−x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126, 13406–13413.

[2]

Liu, Y. Q.; Wang, L.; Feng, H. X.; Ren, X. T.; Ji, J. J.; Bai, F.; Fan, H. Y. Microemulsion-assisted self-assembly and synthesis of size-controlled porphyrin nanocrystals with enhanced photocatalytic hydrogen evolution. Nano Lett. 2019, 19, 2614–2619.

[3]

Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

[4]

Chen, Y.; Rao, Y.; Wang, R. Z.; Yu, Y. N.; Li, Q. L.; Bao, S. J.; Xu, M. W.; Yue, Q.; Zhang, Y. N.; Kang, Y. J. Interfacial engineering of Ni/V2O3 for hydrogen evolution reaction. Nano Res. 2020, 13, 2407–2412.

[5]

Zhang, H.; Li, H. Y.; Akram, B.; Wang, X. Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts. Nano Res. 2019, 12, 1327–1331.

[6]

Ran, J. R.; Qu, J. T.; Zhang, H. P.; Wen, T.; Wang, H. L.; Chen, S. M.; Song, L.; Zhang, X. L.; Jing, L. Q.; Zheng, R. K. et al. 2D metal organic framework nanosheet: A universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 2019, 9, 1803402.

[7]

Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

[8]

Hu, Q.; Li, G. M.; Huang, X. W.; Wang, Z. Y.; Yang, H. P.; Zhang, Q. L.; Liu, J. H.; He, C. X. Electronic structure engineering of single atomic Ru by Ru nanoparticles to enable enhanced activity for alkaline water reduction. J. Mater. Chem. A 2019, 7, 19531–19538.

[9]

Zhuang, L. Z.; Jia, Y.; He, T. W.; Du, A. J.; Yan, X. C.; Ge, L.; Zhu, Z. H.; Yao, X. D. Tuning oxygen vacancies in two-dimensional iron-cobalt oxide nanosheets through hydrogenation for enhanced oxygen evolution activity. Nano Res. 2018, 11, 3509–3518.

[10]

Sun, K. A.; Liu, Y. Q.; Pan, Y.; Zhu, H. Y.; Zhao, J. C.; Zeng, L. Y.; Liu, Z.; Liu, C. G. Targeted bottom-up synthesis of 1T-phase MoS2 arrays with high electrocatalytic hydrogen evolution activity by simultaneous structure and morphology engineering. Nano Res. 2018, 11, 4368–4379.

[11]

Hu, Q.; Gao, K. R.; Wang, X. D.; Zheng, H. J.; Cao, J. Y.; Mi, L. R.; Huo, Q. H.; Yang, H. P.; Liu, J. H.; He, C. X. Subnanometric Ru clusters with upshifted D band center improve performance for alkaline hydrogen evolution reaction. Nat. Commun. 2022, 13, 3958.

[12]

Yuan, Q. C.; Liu, D.; Zhang, N.; Ye, W.; Ju, H. X.; Shi, L.; Long, R.; Zhu, J. F.; Xiong, Y. J. Noble-metal-free Janus-like structures by cation exchange for Z-scheme photocatalytic water splitting under broadband light irradiation. Angew. Chem., Int. Ed. 2017, 56, 4206–4210.

[13]

Zhou, X. M.; Liu, N.; Schmidt, J.; Kahnt, A.; Osvet, A.; Romeis, S.; Zolnhofer, E. M.; Marthala, V. R. R.; Guldi, D. M.; Peukert, W. et al. Noble-metal-free photocatalytic hydrogen evolution activity: The impact of ball milling anatase nanopowders with TiH2. Adv. Mater. 2017, 29, 1604747.

[14]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[15]

Hu, Q.; Li, G. D.; Liu, X. F.; Zhu, B.; Li, G. M.; Fan, L. D.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Coupling pentlandite nanoparticles and dual-doped carbon networks to yield efficient and stable electrocatalysts for acid water oxidation. J. Mater. Chem. A 2019, 7, 461–468.

[16]

Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.

[17]

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

[18]

Gao, G. P.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 2016, 138, 6292–6297.

[19]

Liu, Y.; Feng, Q. G.; Liu, W.; Li, Q.; Wang, Y. C.; Liu, B.; Zheng, L. R.; Wang, W.; Huang, L.; Chen, L. M. et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641.

[20]

Guo, Y. N.; Tang, J.; Wang, Z. L.; Kang, Y. M.; Bando, Y.; Yamauchi, Y. Elaborately assembled core–shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 2018, 47, 494–502.

[21]

Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

[22]

Wang, Y.; Wang, D. S.; Li, Y. D. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts. SmartMat 2021, 2, 56–75.

[23]

Hu, Q.; Li, G. M.; Han, Z.; Wang, Z. Y.; Huang, X. W.; Yang, H. P.; Zhang, Q. L.; Liu, J. H.; He, C. X. Recent progress in the hybrids of transition metals/carbon for electrochemical water splitting. J. Mater. Chem. A 2019, 7, 14380–14390.

[24]

He, Q.; Wan, Y. Y.; Jiang, H. L.; Wu, C. Q.; Sun, Z. T.; Chen, S. M.; Zhou, Y.; Chen, H. P.; Liu, D. B.; Haleem, Y. A. et al. High-metallic-phase-concentration Mo1−xWxS2 nanosheets with expanded interlayers as efficient electrocatalysts. Nano Res. 2018, 11, 1687–1698.

[25]

Li, M. F.; Duanmu, K. N.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

[26]

Chen, S.; Chen, Z. N.; Fang, W. H.; Zhuang, W.; Zhang, L.; Zhang, J. Ag10Ti28-Oxo cluster containing single-atom silver sites: Atomic structure and synergistic electronic properties. Angew. Chem., Int. Ed. 2019, 58, 10932–10935.

[27]

Hong, J. H.; Jin, C. H.; Yuan, J.; Zhang, Z. Atomic defects in two-dimensional materials: From single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis. Adv. Mater. 2017, 29, 1606434.

[28]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[29]

Liu, W. L.; Du, K. Z.; Liu, L.; Zhang, J. X.; Zhu, Z. W.; Shao, Y. H.; Li, M. X. One-step electroreductively deposited iron–cobalt composite films as efficient bifunctional electrocatalysts for overall water splitting. Nano Energy 2017, 38, 576–584.

[30]

Zhou, J.; Dou, Y. B.; He, T.; Zhou, A. W.; Kong, X. J.; Wu, X. Q.; Liu, T. X.; Li, J. R. Revealing the effect of anion-tuning in bimetallic chalcogenides on electrocatalytic overall water splitting. Nano Res. 2021, 14, 4548–4555.

[31]

Ravetz, B. D.; Pun, A. B.; Churchill, E. M.; Congreve, D. N.; Rovis, T.; Campos, L. M. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 2019, 565, 343–346.

[32]

Kunde, V. G.; Flasar, F. M.; Jennings, D. E.; Bézard, B.; Strobel, D. F.; Conrath, B. J.; Nixon, C. A.; Bjoraker, G. L.; Romani, P. N.; Achterberg, R. K. et al. Jupiter’s atmospheric composition from the Cassini thermal infrared spectroscopy experiment. Science 2004, 305, 1582–1586.

[33]

Guo, Y. N.; Zhou, X.; Tang, J.; Tanaka, S.; Kaneti, Y. V.; Na, J.; Jiang, B.; Yamauchi, Y.; Bando, Y.; Sugahara, Y. Multiscale structural optimization: Highly efficient hollow iron-doped metal sulfide heterostructures as bifunctional electrocatalysts for water splitting. Nano Energy 2020, 75, 104913.

[34]

Won, Y. Y.; Meeker, S. P.; Trappe, V.; Weitz, D. A.; Diggs, N. Z.; Emert, J. I. Effect of temperature on carbon-black agglomeration in hydrocarbon liquid with adsorbed dispersant. Langmuir 2005, 21, 924–932.

[35]

Shi, Q.; Li, S. S.; Tian, S. H.; Huang, Z. L.; Yang, Y.; Liao, Z. W.; Sun, J. Y.; Wang, J. D.; Yang, Y. R. Investigating agglomeration behaviors in high temperature gas–solid fluidized beds with liquid injection. Ind. Eng. Chem. Res. 2018, 57, 5482–5494.

[36]

Varga, E.; Pusztai, P.; Oszkó, A.; Baán, K.; Erdőhelyi, A.; Kónya, Z.; Kiss, J. Stability and temperature-induced agglomeration of Rh nanoparticles supported by CeO2. Langmuir 2016, 32, 2761–2770.

[37]

Dong, J. X.; Gao, Z. F.; Zhang, Y.; Li, B. L.; Li, N. B.; Luo, H. Q. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction. Biosens. Bioelectron. 2017, 91, 155–161.

[38]

Finney, E. E.; Finke, R. G. The four-step, double-autocatalytic mechanism for transition-metal nanocluster nucleation, growth, and then agglomeration: Metal, ligand, concentration, temperature, and solvent dependency studies. Chem. Mater. 2008, 20, 1956–1970.

[39]

Kister, T.; Monego, D.; Mulvaney, P.; Widmer-Cooper, A.; Kraus, T. Colloidal stability of apolar nanoparticles: The role of particle size and ligand shell structure. ACS Nano 2018, 12, 5969–5977.

[40]

Chen, X. J.; Shi, R.; Chen, Q.; Zhang, Z. J.; Jiang, W. J.; Zhu, Y. F.; Zhang, T. R. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy 2019, 59, 644–650.

[41]

Xu, L.; Hu, Z. W.; Wang, L. L.; He, C. X.; Yu, S. H. Unconventional chemical graphitization and functionalization of graphene oxide toward nanocomposites by degradation of ZnSe0.5 hybrid nanobelts. Sci. China Mater. 2020, 63, 1878–1888.

[42]

Zhang, X. D.; Xie, X.; Wang, H.; Zhang, J. J.; Pan, B. C.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.

[43]

Liu, G.; Niu, P.; Sun, C. H.; Smith, S. C.; Chen, Z. G.; Lu, G. Q.; Cheng, H. M. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 2010, 132, 11642–11648.

[44]

Yang, M. X.; Feng, T. L.; Chen, Y. X.; Liu, J. J.; Zhao, X. H.; Yang, B. Synchronously integration of Co, Fe dual-metal doping in Ru@C and CDs for boosted water splitting performances in alkaline media. Appl. Catal. B: Environ. 2020, 267, 118657.

[45]

Han, S. C.; Hu, X. Y.; Yang, W.; Qian, Q. R.; Fang, X. S.; Zhu, Y. F. Constructing the band alignment of graphitic carbon nitride (g-C3N4)/copper(I) oxide (Cu2O) composites by adjusting the contact facet for superior photocatalytic activity. ACS Appl. Energy Mater. 2019, 2, 1803–1811.

[46]

Guo, X. W.; Chen, S. M.; Wang, H. J.; Zhang, Z. M.; Lin, H.; Song, L.; Lu, T. B. Single-atom molybdenum immobilized on photoactive carbon nitride as efficient photocatalysts for ambient nitrogen fixation in pure water. J. Mater. Chem. A 2019, 7, 19831–19837.

[47]

Zhang, W. Y.; Peng, Q.; Shi, L. L.; Yao, Q. S.; Wang, X.; Yu, A. P.; Chen, Z. W.; Fu, Y. S. Merging single-atom-dispersed iron and graphitic carbon nitride to a joint electronic system for high-efficiency photocatalytic hydrogen evolution. Small 2019, 15, 1905166.

[48]

Wang, S. Y.; Li, J. Q.; Li, Q.; Bai, X. W.; Wang, J. L. Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation. Nanoscale 2020, 12, 364–371.

[49]

Chen, Z.; Zhao, J. X.; Cabrera, C. R.; Chen, Z. F. Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction. Small Methods 2019, 3, 1800368.

[50]

Wang, S. Y.; Jiang, S. P.; Wang, X. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications. Electrochim. Acta 2011, 56, 3338–3344.

[51]

Hao, R.; Chen, J. J.; Wang, Z. Y.; Zhang, J. J.; Gan, Q. M.; Wang, Y. F.; Li, Y. Z.; Luo, W.; Wang, Z. Q.; Yuan, H. M. et al. Iron polyphthalocyanine-derived ternary-balanced Fe3O4/Fe3N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction. Sci. China Mater. 2021, 64, 2987–2996.

[52]

Wu, S. S.; Zhu, Y. G.; Huo, Y. F.; Luo, Y. C.; Zhang, L. H.; Wan, Y.; Nan, B.; Cao, L. J.; Wang, Z. Y.; Li, M. C. et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci. China Mater. 2017, 60, 654–663.

[53]
Zhang, K.; Zhu, Y. T.; Yue, K. H.; Zhan, K.; Wang, P.; Kong, Y.; Yan, Y.; Wang, X. Y. In-situ transformed trimetallic metal-organic frameworks as an efficient pre-catalyst for electrocatalytic oxygen evolution. Nano Res. 2022, in press, https://doi.org/10.1007/s12274-022-4701-z.
[54]

Yang, M. Y.; Shang, C. Q.; Li, F. F.; Liu, C.; Wang, Z. Y.; Gu, S.; Liu, D.; Cao, L. J.; Zhang, J. J.; Lu, Z. G. et al. Synergistic electronic and morphological modulation on ternary Co1−xVxP nanoneedle arrays for hydrogen evolution reaction with large current density. Sci. China Mater. 2021, 64, 880–891.

Nano Research
Pages 2245-2251
Cite this article:
Li X, Zhang H, Li X, et al. Janus heterostructure of cobalt and iron oxide as dual-functional electrocatalysts for overall water splitting. Nano Research, 2023, 16(2): 2245-2251. https://doi.org/10.1007/s12274-022-5024-9
Topics:

8806

Views

17

Crossref

18

Web of Science

16

Scopus

1

CSCD

Altmetrics

Received: 17 July 2022
Revised: 27 August 2022
Accepted: 07 September 2022
Published: 02 December 2022
© Tsinghua University Press 2022
Return