Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The separation of CO2/C2H2 mixture by CO2-selective sorbents is an energy-efficient C2H2 purification technique, but is strategically challenging due to their similar molecular size and physicochemical properties. Meanwhile, water is inevitable in CO2/C2H2 mixture and it is usually a significant barrier because of its competitive adsorption with CO2. To address this challenge, herein, we report the first example of metal–organic framework (MOF) that exhibits water-boosted CO2 adsorption and CO2/C2H2 separation by anchoring L-arginine (ARG) on the Zr6 cluster of MOF-808. The CO2 affinity and capacity in the resulting MOF-808-ARG are markedly facilitated by the presence of water, while the C2H2 adsorption is significantly suppressed. Specifically, CO2 adsorption capacities in adsorption isotherm and breakthrough measurement are increased to 143% and 184%, respectively. In addition, the wet MOF-808-ARG exhibits the record CO2/C2H2 selectivity of 1,180 under zero coverage. Breakthrough experiments reveal that CO2/C2H2 mixture can be completely separated and the result of mass spectrometry indicates that the C2H2 purity in the outlet is up to 99.9%. In situ infrared (IR) results and density functional theory (DFT) calculations reveal the water-promoted CO2 adsorption mechanism that the formation of bicarbonate products in the presence of water is thermodynamically and kinetically more favorable than that without water. Moreover, MOF-808-ARG also possesses excellent water stability and excellent regeneration of CO2 adsorption. This work provides a new paradigm by transforming the negative effects of water into positive ones for CO2/C2H2 separation.
Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev. 2014, 114, 1743–1760.
Granada, A.; Karra, S. B.; Senkan, S. M. Conversion of methane into acetylene and ethylene by the chlorine-catalyzed oxidative-pyrolysis (CCOP) process. 1. Oxidative pyrolysis of chloromethane. Ind. Eng. Chem. Res. 1987, 26, 1901–1905.
Eguchi, R.; Uchida, S.; Mizuno, N. Inverse and high CO2/C2H2 sorption selectivity in flexible organicinorganic ionic crystals. Angew. Chem., Int. Ed. 2012, 51, 1635–1639.
Foo, M. L.; Matsuda, R.; Hijikata, Y.; Krishna, R.; Sato, H.; Horike, S.; Hori, A.; Duan, J. G.; Sato, Y.; Kubota, Y. et al. An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. J. Am. Chem. Soc. 2016, 138, 3022–3030.
Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.
Ye, Y. X.; Xian, S. K.; Cui, H.; Tan, K.; Gong, L. S.; Liang, B.; Pham, T.; Pandey, H.; Krishna, R.; Lan, P. C.; et al. Ma, S.Q. Metal–organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. J. Am. Chem. Soc. 2022, 144, 1681–1689.
Bao, Z. B.; Chang, G. G.; Xing, H. B.; Krishna, R.; Ren, L. L.; Chen, B. L. Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy. Environ. Sci. 2016, 9, 3612–3641.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 2013, 341, 1230444.
Gao, J. K.; Qian, X. F.; Lin, R. B.; Krishna, R.; Wu, H.; Zhou, W.; Chen, B. L. Mixed metal–organic framework with multiple binding sites for efficient C2H2/CO2 separation. Angew. Chem., Int. Ed. 2020, 59, 4396–4400.
Wang, Y.; Jia, X. X.; Yang, H. J.; Wang, Y. X.; Chen, X. T.; Hong, A. N.; Li, J. P.; Bu, X. H.; Feng, P. Y. A strategy for constructing pore-space-partitioned MOFs with high uptake capacity for C2 hydrocarbons and CO2. Angew. Chem., Int. Ed. 2020, 59, 19027–19030.
Gong, L. S.; Liu, Y.; Ren, J. Y.; Al-Enizi, A. M.; Nafady, A.; Ye, Y. X.; Bao, Z. B.; Ma, S. Q. Utilization of cationic microporous metal–organic framework for efficient Xe/Kr separation. Nano. Res. 2022, 15, 7559–7564.
Vismara, R.; Di Nicola, C.; Millán, R. G. S.; Domasevich, K. V.; Pettinari, C.; Navarro, J. A. R.; Galli, S. Efficient hexane isomers separation in isoreticular bipyrazolate metal–organic frameworks: The role of pore functionalization. Nano Res. 2021, 14, 532–540.
Yu, J. M.; Xie, L. H.; Li, J. R.; Ma, Y. G.; Seminario, J. M.; Balbuena, P. B. CO2 capture and separations using MOFs: Computational and experimental studies. Chem. Rev. 2017, 117, 9674–9754.
Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal–organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.
Liu, J. J.; Wang, Z. F.; Cheng, P.; Zaworotko, M. J.; Chen, Y.; Zhang, Z. J. Post-synthetic modifications of metal–organic cages. Nat. Rev. Chem. 2022, 6, 339–356.
Chang, G. G.; Li, B.; Wang, H. L.; Hu, T. L.; Bao, Z. B.; Chen, B. L. Control of interpenetration in a microporous metal–organic framework for significantly enhanced C2H2/CO2 separation at room temperature. Chem. Commun. 2016, 52, 3494–3496.
Fu, X. P.; Wang, Y. L.; Liu, Q. Y. Metal–organic frameworks for C2H2/CO2 separation. Dalton Trans. 2020, 49, 16598–16607.
Duan, J. G.; Jin, W. Q.; Krishna, R. Natural gas purification using a porous coordination polymer with water and chemical stability. Inorg. Chem. 2015, 54, 4279–4284.
Zeng, H.; Xie, M.; Huang, Y. L.; Zhao, Y. F.; Zhao, X. J.; Xie, X. J.; Bai, J. P.; Wan, M. Y.; Krishna, R.; Lu, W. G. et al. Induced fit of C2H2 in a flexible MOF through cooperative action of open metal sites. Angew. Chem., Int. Ed. 2019, 58, 8515–8519.
Wang, J.; Zhang, Y.; Su, Y.; Liu, X.; Zhang, P. X.; Lin, R. B.; Chen, S. X.; Deng, Q.; Zeng, Z. L.; Deng, S. G. et al. Fine pore engineering in a series of isoreticular metal–organic frameworks for efficient C2H2/CO2 separation. Nat. Commun. 2022, 13, 200.
Mukherjee, S.; He, Y. H.; Franz, D.; Wang, S. Q.; Xian, W. R.; Bezrukov, A. A.; Space, B.; Xu, Z. T.; He, J.; Zaworotko, M. J. Halogen–C2H2 binding in ultramicroporous metal–organic frameworks (MOFs) for benchmark C2H2/CO2 separation selectivity. Chem. —Eur. J. 2020, 26, 4923–4929.
Lin, R. B.; Li, L. B.; Wu, H.; Arman, H.; Li, B.; Lin, R. G.; Zhou, W.; Chen, B. L. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. 2017, 139, 8022–8028.
Jiang, M. D.; Cui, X. L.; Yang, L. F.; Yang, Q. W.; Zhang, Z. G.; Yang, Y. W.; Xing, H. B. A thermostable anion-pillared metal–organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chem. Eng. J. 2018, 352, 803–810.
Yu, F.; Hu, B. Q.; Wang, X. N.; Zhao, Y. M.; Li, J. L.; Li, B.; Zhou, H. C. Enhancing the separation efficiency of a C2H2/C2H4 mixture by a chromium metal–organic framework fabricated via post-synthetic metalation. J. Mater. Chem. A 2020, 8, 2083–2089.
Cao, J. W.; Mukherjee, S.; Pham, T.; Wang, Y.; Wang, T.; Zhang, T.; Jiang, X.; Tang, H. J.; Forrest, K. A.; Space, B. et al. One-step ethylene production from a four-component gas mixture by a single physisorbent. Nat Commun. 2021, 12, 6507.
Xie, Y.; Cui, H.; Wu, H.; Lin, R. B.; Zhou, W.; Chen, B. L. Electrostatically driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material. Angew. Chem., Int. Ed. 2021, 60, 9604–9609.
Hao, C. L.; Ren, H.; Zhu, H. Y.; Chi, Y. H.; Zhao, W.; Liu, X. P.; Guo, W. Y. CO2-favored metal–organic frameworks SU-101(M) (M = Bi, In, Ga, and Al) with inverse and high selectivity of CO2 from C2H2 and C2H4. Sep. Purif. Technol. 2022, 290, 120804.
Jin, M. M.; Li, Y. X.; Gu, C.; Liu, X. Q.; Sun, L. B. Tailoring microenvironment of adsorbents to achieve excellent CO2 uptakes from wet gases. AIChE J. 2020, 66, e16645.
Chen, X.; Chen, D. E.; Gan, L. H. Molecular dynamics simulation of the partial oxidation of methane to produce acetylene. Chem. Phys. Lett. 2021, 771, 138559.
Zhang, Q.; Wang, J. F.; Wang, T. F. Effect of ethane and propane addition on acetylene production in the partial oxidation process of methane. Ind. Eng. Chem. Res. 2017, 56, 5174–5184.
Xian, S. K.; Peng, J. J.; Zhang, Z. J.; Xia, Q. B.; Wang, H. H.; Li, Z. Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures. Chem. Eng. J. 2015, 270, 385–392.
Hossain, M. I.; Cunningham, J. D.; Becker, T. M.; Grabicka, B. E.; Walton, K. S.; Rabideau, B. D.; Glover, T. G. Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66. Chem. Eng. Sci. 2019, 203, 346–357.
Yazaydın, A. Ö.; Benin, A. I.; Faheem, S. A.; Jakubczak, P.; Low, J. J.; Willis, R. R.; Snurr, R. Q. Enhanced CO2 adsorption in metal–organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 2009, 21, 1425–1430.
Huang, H. L.; Zhang, W. J.; Liu, D. H.; Zhong, C. L. Understanding the effect of trace amount of water on CO2 capture in natural gas upgrading in metal–organic frameworks: A molecular simulation study. Ind. Eng. Chem. Res. 2012, 51, 10031–10038.
Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal–organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.
Peng, Y. G.; Huang, H. L.; Zhang, Y. X.; Kang, C. F.; Chen, S. M.; Song, L.; Liu, D. H.; Zhong, C. L. A versatile MOF-based trap for heavy metal ion capture and dispersion. Nat. Commun. 2018, 9, 187.
Chen, X. Y.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Modified-MOF-808-Loaded polyacrylonitrile membrane for highly efficient, simultaneous emulsion separation and heavy metal ion removal. ACS Appl. Mater. Interfaces 2020, 12, 39227–39235.
DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y. G.; Walton, K. S. Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A 2013, 1, 5642–5650.
Nguyen, H. L. Metal–organic frameworks can photocatalytically split water-why not? Adv. Mater. 2022, 34, 2200465.