AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Solid-state NMR studies on the organic matrix of bone

Hua-Dong Xue1,2Yu Yin2Tian He2Haixin Song1Jianhua Li1( )Xueqian Kong1,2( )
Department of Rehabilitation, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
Department of Chemistry, Zhejiang University, Hangzhou 310027, China
Show Author Information

Graphical Abstract

The applications of multi-nuclear nuclear magnetic resonance (NMR), multi-dimensional NMR, relaxation experiments, and advanced NMR techniques facilitate the investigation of native bone matrix.

Abstract

Bone is a hierarchical architecture that consists of both inorganic and organic components. The organic components, including collagen and numerous non-collagenous biomolecules, are crucial for maintaining the mechanical strength and physiological functions of bone. The native structures of organic components and especially the mutual interactions between different components are important questions to be addressed. Among different analytical techniques, solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful tool to reveal the chemical and interactional information at an atomic level. Recent advancements of SSNMR technology and experimental protocols have brought great advances in understanding the molecular details in native bones. In this review, we summarize the progresses on the SSNMR studies of various organic components in the bone matrix. In the first part, we review the studies on collagen from four different aspects: (1) water-associated molecular dynamics; (2) the intrahelical/interhelical interactions in collagen residues; (3) the interactions between collagen and citrate; and (4) the cross-linking between collagen and inorganic surface. In the second part, we review the studies on the non-protein biomolecules including sugar species, citrate, lipids, and nucleic acids. In the end, we propose an outlook of future directions for SSNMR investigations on bones.

References

[1]

Reznikov, N.; Bilton, M.; Lari, L.; Stevens, M. M.; Kröger, R. Fractal-like hierarchical organization of bone begins at the nanoscale. Science 2018, 360, eaao2189.

[2]

Ping, H.; Wagermaier, W.; Horbelt, N.; Scoppola, E.; Li, C. H.; Werner, P.; Fu, Z. Y.; Fratzl, P. Mineralization generates megapascal contractile stresses in collagen fibrils. Science 2022, 376, 188–192.

[3]

Mroue, K. H.; Viswan, A.; Sinha, N.; Ramamoorthy, A. Solid-state NMR spectroscopy: The magic wand to view bone at nanoscopic resolution. Annu. Rep. NMR Spectrosc. 2017, 92, 365–413.

[4]

Launey, M. E.; Buehler, M. J.; Ritchie, R. O. On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 2010, 40, 25–53.

[5]

Maghsoudi-Ganjeh, M.; Wang, X. D.; Zeng, X. W. Nanomechanics and ultrastructure of bone: A review. Comput. Model. Eng. Sci. 2020, 125, 1–32.

[6]

Liu, Y.; Luo, D.; Wang, T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small 2016, 12, 4611–4632.

[7]

Reznikov, N.; Shahar, R.; Weiner, S. Bone hierarchical structure in three dimensions. Acta Biomater. 2014, 10, 3815–3826.

[8]

Wang, Y.; Von Euw, S.; Fernandes, F. M.; Cassaignon, S.; Selmane, M.; Laurent, G.; Pehau-Arnaudet, G.; Coelho, C.; Bonhomme-Coury, L.; Giraud-Guille, M. M. et al. Water-mediated structuring of bone apatite. Nat. Mater. 2013, 12, 1144–1153.

[9]
Kolodziejski, W. Solid-state NMR studies of bone. In New Techniques in Solid-State NMR; Klinowski, J., Ed.; Springer: Berlin, 2005; pp 235–270.
[10]

Wilson, E. E.; Awonusi, A.; Morris, M. D.; Kohn, D. H.; Tecklenburg, M. M. J.; Beck, L. W. Three structural roles for water in bone observed by solid-state NMR. Biophys. J. 2006, 90, 3722–3731.

[11]

Fernández-Seara, M. A.; Wehrli, S. L.; Takahashi, M.; Wehrli, F. W. Water content measured by proton-deuteron exchange NMR predicts bone mineral density and mechanical properties. J. Bone Miner. Res. 2004, 19, 289–296.

[12]

Nyman, J. S.; Ni, Q. W.; Nicolella, D. P.; Wang, X. D. Measurements of mobile and bound water by nuclear magnetic resonance correlate with mechanical properties of bone. Bone 2008, 42, 193–199.

[13]

Fernández-Seara, M. A.; Wehrli, S. L.; Wehrli, F. W. Diffusion of exchangeable water in cortical bone studied by nuclear magnetic resonance. Biophys. J. 2002, 82, 522–529.

[14]

Boskey, A.; Pleshko Camacho, N. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 2007, 28, 2465–2478.

[15]

Morris, M. D.; Mandair, G. S. Raman assessment of bone quality. Clin. Orthop. Relat. Res. 2011, 469, 2160–2169.

[16]

Tadano, S.; Giri, B. X-ray diffraction as a promising tool to characterize bone nanocomposites. Sci. Technol. Adv. Mater. 2011, 12, 064708.

[17]

Shah, F. A.; Ruscsák, K.; Palmquist, A. 50 years of scanning electron microscopy of bone—A comprehensive overview of the important discoveries made and insights gained into bone material properties in health, disease, and taphonomy. Bone Res. 2019, 7, 15.

[18]

Faot, F.; Chatterjee, M.; De Camargos, G. V.; Duyck, J.; Vandamme, K. Micro-CT analysis of the rodent jaw bone micro-architecture: A systematic review. Bone Rep. 2015, 2, 14–24.

[19]

Pabisch, S.; Wagermaier, W.; Zander, T.; Li, C. H.; Fratzl, P. Imaging the nanostructure of bone and dentin through small- and wide-angle X-ray scattering. Methods Enzymol. 2013, 532, 391–413.

[20]

Murgoci, A.; Duer, M. Molecular conformations and dynamics in the extracellular matrix of mammalian structural tissues: Solid-state NMR spectroscopy approaches. Matrix Biol. Plus 2021, 12, 100086.

[21]

Li, D. B.; Xu, S.; Yu, Z. W. Application of solid-state NMR to bone and bone biomaterials. Chin. J. Magn. Reson. 2017, 34, 115–129.

[22]

Tsai, T. W. T.; Chan, J. C. C. Recent progress in the solid-state NMR studies of biomineralization. Annu. Rep. NMR Spectrosc. 2011, 73, 1–61.

[23]

Duer, M. J. The contribution of solid-state NMR spectroscopy to understanding biomineralization: Atomic and molecular structure of bone. J. Magn. Reson. 2015, 253, 98–110.

[24]

Gervais, C.; Bonhomme, C.; Laurencin, D. Recent directions in the solid-state NMR study of synthetic and natural calcium phosphates. Solid State Nucl. Magn. Reson. 2020, 107, 101663.

[25]

Singh, C.; Purusottam, R. N.; Viswan, A.; Sinha, N. Molecular level understanding of biological systems with high motional heterogeneity in its absolute native state. J. Phys. Chem. C 2016, 120, 21871–21878.

[26]

He, N.; Elingarami, S.; Zhu, P. Z. Application of solid-state NMR in characterization of bone related tissue engineering. J. Nanosci. Nanotechnol. 2012, 12, 2858–2865.

[27]

Sarkar, S. K.; Hiyama, Y.; Niu, C. H.; Young, P. E.; Gerig, J. T.; Torchia, D. A. Molecular dynamics of collagen side chains in hard and soft tissues. A multinuclear magnetic resonance study. Biochemistry 1987, 26, 6793–6800.

[28]

Sarkar, S. K.; Sullivan, C. E.; Torchia, D. A. Solid state 13C NMR study of collagen molecular dynamics in hard and soft tissues. J. Biol. Chem. 1983, 258, 9762–9767.

[29]

Sarkar, S. K.; Sullivan, C. E.; Torchia, D. A. Nanosecond fluctuations of the molecular backbone of collagen in hard and soft tissues: A carbon-13 nuclear magnetic resonance relaxation study. Biochemistry 1985, 24, 2348–2354.

[30]

Von Euw, S.; Wang, Y.; Laurent, G.; Drouet, C.; Babonneau, F.; Nassif, N.; Azaïs, T. Bone mineral: New insights into its chemical composition. Sci. Rep. 2019, 9, 8456.

[31]

Kaflak, A.; Chmielewski, D.; Kolodziejski, W. Solid-state NMR study of discrete environments of bone mineral nanoparticles using phosphorus-31 relaxation. J. Appl. Biomed. 2016, 14, 321–330.

[32]

Laurencin, D.; Wong, A.; Chrzanowski, W.; Knowles, J. C.; Qiu, D.; Pickup, D. M.; Newport, R. J.; Gan, Z. H.; Duer, M. J.; Smith, M. E. Probing the calcium and sodium local environment in bones and teeth using multinuclear solid state NMR and X-ray absorption spectroscopy. Phys. Chem. Chem. Phys. 2010, 12, 1081–1091.

[33]

Xu, J. D.; Zhu, P. Z.; Gan, Z. H.; Sahar, N.; Tecklenburg, M.; Morris, M. D.; Kohn, D. H.; Ramamoorthy, A. Natural-abundance 43Ca solid-state NMR spectroscopy of bone. J. Am. Chem. Soc. 2010, 132, 11504–11509.

[34]

Wang, Y.; Von Euw, S.; Laurent, G.; Crevant, C.; Bonhomme-Coury, L.; Giraud-Guille, M. M.; Babonneau, F.; Nassif, N.; Azaïs, T. Impact of collagen confinement vs. ionic substitutions on the local disorder in bone and biomimetic apatites. Mater. Horiz. 2014, 1, 224–231.

[35]

Kolmas, J.; Jaklewicz, A.; Zima, A.; Bućko, M.; Paszkiewicz, Z.; Lis, J.; Ślósarczyk, A.; Kolodziejski, W. Incorporation of carbonate and magnesium ions into synthetic hydroxyapatite: The effect on physicochemical properties. J. Mol. Struct. 2011, 987, 40–50.

[36]

Yasar, O. F.; Liao, W. C.; Mathew, R.; Yu, Y.; Stevensson, B.; Liu, Y. H.; Shen, Z. J.; Edén, M. The carbonate and sodium environments in precipitated and biomimetic calcium hydroxy-carbonate apatite contrasted with bone mineral: Structural insights from solid-state NMR. J. Phys. Chem. C 2021, 125, 10572–10592.

[37]
Huster, D. Solid-state NMR investigations of the hydration and molecular dynamics of collagen in biological tissue. In Modern Magnetic Resonance; Webb, G. A., Ed.; Springer: Cham, 2018; pp 363–380.
[38]

Rai, R. K.; Barbhuyan, T.; Singh, C.; Mittal, M.; Khan, M. P.; Sinha, N.; Chattopadhyay, N. Total water, phosphorus relaxation and inter-atomic organic to inorganic interface are new determinants of trabecular bone integrity. PLoS One 2013, 8, e83478.

[39]

Nikel, O.; Laurencin, D.; Bonhomme, C.; Sroga, G. E.; Besdo, S.; Lorenz, A.; Vashishth, D. Solid state NMR investigation of intact human bone quality: Balancing issues and insight into the structure at the organic–mineral interface. J. Phys. Chem. C 2012, 116, 6320–6331.

[40]

Best, S. M.; Duer, M. J.; Reid, D. G.; Wise, E. R.; Zou, S. Towards a model of the mineral–organic interface in bone: NMR of the structure of synthetic glycosaminoglycan- and polyaspartate-calcium phosphate composites. Magn. Reson. Chem. 2008, 46, 323–329.

[41]

Rai, R. K.; Sinha, N. Dehydration-induced structural changes in the collagen-hydroxyapatite interface in bone by high-resolution solid-state NMR spectroscopy. J. Phys. Chem. C 2011, 115, 14219–14227.

[42]

Mroue, K. H.; Nishiyama, Y.; Kumar Pandey, M.; Gong, B.; McNerny, E.; Kohn, D. H.; Morris, M. D.; Ramamoorthy, A. Proton-detected solid-state NMR spectroscopy of bone with ultrafast magic angle spinning. Sci. Rep. 2015, 5, 11991.

[43]

Singh, C.; Rai, R. K.; Kayastha, A. M.; Sinha, N. Ultra fast magic angle spinning solid-state NMR spectroscopy of intact bone. Magn. Reson. Chem. 2016, 54, 132–135.

[44]

Singh, C.; Rai, R. K.; Aussenac, F.; Sinha, N. Direct evidence of imino acid-aromatic interactions in native collagen protein by DNP-enhanced solid-state NMR spectroscopy. J. Phys. Chem. Lett. 2014, 5, 4044–4048.

[45]

Goldberga, I.; Li, R.; Chow, W. Y.; Reid, D. G.; Bashtanova, U.; Rajan, R.; Puszkarska, A.; Oschkinat, H.; Duer, M. J. Detection of nucleic acids and other low abundance components in native bone and osteosarcoma extracellular matrix by isotope enrichment and DNP-enhanced NMR. RSC Adv. 2019, 9, 26686–26690.

[46]

Wi, S.; Dwivedi, N.; Dubey, R.; Mentink-Vigier, F.; Sinha, N. Dynamic nuclear polarization-enhanced, double-quantum filtered 13C-13C dipolar correlation spectroscopy of natural 13C abundant bone-tissue biomaterial. J. Magn. Reson. 2022, 335, 107144.

[47]

Tiwari, N.; Wegner, S.; Hassan, A.; Dwivedi, N.; Rai, R.; Sinha, N. Probing short and long-range interactions in native collagen inside the bone matrix by BioSolids CryoProbe. Magn. Reson. Chem. 2021, 59, 99–107.

[48]

Hassan, A.; Quinn, C. M.; Struppe, J.; Sergeyev, I. V.; Zhang, C. T.; Guo, C. M.; Runge, B.; Theint, T.; Dao, H. H.; Jaroniec, C. P. et al. Sensitivity boosts by the CPMAS CryoProbe for challenging biological assemblies. J. Magn. Reson. 2020, 311, 106680.

[49]

Mroue, K. H.; MacKinnon, N.; Xu, J. D.; Zhu, P. Z.; McNerny, E.; Kohn, D. H.; Morris, M. D.; Ramamoorthy, A. High-resolution structural insights into bone: A solid-state NMR relaxation study utilizing paramagnetic doping. J. Phys. Chem. B 2012, 116, 11656–11661.

[50]

Singh, C.; Sinha, N. Mechanistic insights into the role of water in backbone dynamics of native collagen protein by natural abundance 15N NMR spectroscopy. J. Phys. Chem. C 2016, 120, 9393–9398.

[51]

Chow, W. Y.; Rajan, R.; Muller, K. H.; Reid, D. G.; Skepper, J. N.; Wong, W. C.; Brooks, R. A.; Green, M.; Bihan, D.; Farndale, R. W. et al. NMR spectroscopy of native and in vitro tissues implicates polyADP ribose in biomineralization. Science 2014, 344, 742–746.

[52]

Wong, V. W. C.; Reid, D. G.; Chow, W. Y.; Rajan, R.; Green, M.; Brooks, R. A.; Duer, M. J. Preparation of highly and generally enriched mammalian tissues for solid state NMR. J. Biomol. NMR 2015, 63, 119–123.

[53]

Shoulders, M. D.; Raines, R. T. Collagen structure and stability. Annu. Rev. Biochem. 2009, 78, 929–958.

[54]

Huster, D. Solid-state NMR studies of collagen structure and dynamics in isolated fibrils and in biological tissues. Annu. Rep. NMR Spectrosc. 2008, 64, 127–159.

[55]

Wang, Y.; Azaïs, T.; Robin, M.; Vallée, A.; Catania, C.; Legriel, P.; Pehau-Arnaudet, G.; Babonneau, F.; Giraud-Guille, M. M.; Nassif, N. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater. 2012, 11, 724–733.

[56]

Gul-E-Noor, F.; Singh, C.; Papaioannou, A.; Sinha, N.; Boutis, G. S. Behavior of water in collagen and hydroxyapatite sites of cortical bone: Fracture, mechanical wear, and load bearing studies. J. Phys. Chem. C 2015, 119, 21528–21537.

[57]

Reichert, D.; Pascui, O.; deAzevedo, E. R.; Bonagamba, T. J.; Arnold, K.; Huster, D. A solid-state NMR study of the fast and slow dynamics of collagen fibrils at varying hydration levels. Magn. Reson. Chem. 2004, 42, 276–284.

[58]

Zhu, P. Z.; Xu, J. D.; Sahar, N.; Morris, M. D.; Kohn, D. H.; Ramamoorthy, A. Time-resolved dehydration-induced structural changes in an intact bovine cortical bone revealed by solid-state NMR spectroscopy. J. Am. Chem. Soc. 2009, 131, 17064–17065.

[59]

Singh, C.; Rai, R. K.; Sinha, N. Experimental aspect of solid-state nuclear magnetic resonance studies of biomaterials such as bones. Solid State Nucl. Magn. Reson. 2013, 54, 18–25.

[60]

Rai, R. K.; Singh, C.; Sinha, N. Predominant role of water in native collagen assembly inside the bone matrix. J. Phys. Chem. B 2015, 119, 201–211.

[61]

Viswan, A.; Sinha, N. Native Collagen and its structural fulcrum through a site specific hydration topology map. J. Phys. Chem. C 2017, 121, 18807–18814.

[62]

Tiwari, N.; Wi, S.; Mentink-Vigier, F.; Sinha, N. Mechanistic insights into the structural stability of collagen-containing biomaterials such as bones and cartilage. J. Phys. Chem. B 2021, 125, 4757–4766.

[63]

Jaeger, C.; Groom, N. S.; Bowe, E. A.; Horner, A.; Davies, M. E.; Murray, R. C.; Duer, M. J. Investigation of the nature of the protein–mineral interface in bone by solid-state NMR. Chem. Mater. 2005, 17, 3059–3061.

[64]

Nikel, O.; Laurencin, D.; McCallum, S. A.; Gundberg, C. M.; Vashishth, D. NMR investigation of the role of osteocalcin and osteopontin at the organic–inorganic interface in bone. Langmuir 2013, 29, 13873–13882.

[65]

Stayton, P. S.; Drobny, G. P.; Shaw, W. J.; Long, J. R.; Gilbert, M. Molecular recognition at the protein–hydroxyapatite interface. Crit. Rev. Oral Biol. Med. 2003, 14, 370–376.

[66]

Stock, S. R. The mineral–collagen interface in bone. Calcif. Tissue Int. 2015, 97, 262–280.

[67]

Costello, L. C.; Chellaiah, M.; Zou, J.; Franklin, R. B.; Reynolds, M. A. The status of citrate in the hydroxyapatite/collagen complex of bone; and its role in bone formation. J. Regen. Med. Tissue Eng. 2014, 3, 4.

[68]

Nanda, R.; Hazan, S.; Sauer, K.; Aladin, V.; Keinan-Adamsky, K.; Corzilius, B.; Shahar, R.; Zaslansky, P.; Goobes, G. Molecular differences in collagen organization and in organic–inorganic interfacial structure of bones with and without osteocytes. Acta Biomater. 2022, 144, 195–209.

[69]

Chen, P. H.; Tseng, Y. H.; Mou, Y.; Tsai, Y. L.; Guo, S. M.; Huang, S. J.; Yu, S. S. F.; Chan, J. C. C. Adsorption of a statherin peptide fragment on the surface of nanocrystallites of hydroxyapatite. J. Am. Chem. Soc. 2008, 130, 2862–2868.

[70]

Dermience, M.; Lognay, G.; Mathieu, F.; Goyens, P. Effects of thirty elements on bone metabolism. J. Trace Elem. Med. Biol. 2015, 32, 86–106.

[71]

Lopes, D.; Martins-Cruz, C.; Oliveira, M. B.; Mano, J. F. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018, 185, 240–275.

[72]

Lin, X.; Patil, S.; Gao, Y. G.; Qian, A. R. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 2020, 11, 757.

[73]

Wise, E. R.; Maltsev, S.; Davies, M. E.; Duer, M. J.; Jaeger, C.; Loveridge, N.; Murray, R. C.; Reid, D. G. The organic–mineral interface in bone is predominantly polysaccharide. Chem. Mater. 2007, 19, 5055–5057.

[74]

Jilka, R. L.; Noble, B.; Weinstein, R. S. Osteocyte apoptosis. Bone 2013, 54, 264–271.

[75]

Farre, B.; Cuif, J. P.; Dauphin, Y. Occurrence and diversity of lipids in modern coral skeletons. Zoology 2010, 113, 250–257.

[76]

Odutuga, A. A.; Prout, R. E. S. Lipid analysis of human enamel and dentine. Arch. Oral Biol. 1974, 19, 729–731.

[77]

Eastoe, J. E. Chemical aspects of the matrix concept in calcified tissue organisation. Calcif. Tissue Res. 1968, 2, 1–19.

[78]

Stack, M. V. The chemical nature of the organic matrix of bone, dentin, and enamel. Ann. N. Y. Acad. Sci. 1955, 60, 585–595.

[79]

Gandhi, N. S.; Mancera, R. L. The structure of glycosaminoglycans and their interactions with proteins. Chem. Biol. Drug Des. 2008, 72, 455–482.

[80]

Reid, D. G.; Duer, M. J.; Murray, R. C.; Wise, E. R. The organic–mineral interface in teeth is like that in bone and dominated by polysaccharides: Universal mediators of normal calcium phosphate biomineralization in vertebrates? Chem. Mater. 2008, 20, 3549–3550.

[81]

Müller, K. H.; Hayward, R.; Rajan, R.; Whitehead, M.; Cobb, A. M.; Ahmad, S.; Sun, M. X.; Goldberga, I.; Li, R.; Bashtanova, U. et al. Poly(ADP-ribose) links the DNA damage response and biomineralization. Cell Rep. 2019, 27, 3124–3138.e13.

[82]

Hu, Y. Y.; Rawal, A.; Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 2010, 107, 22425–22429.

[83]

Davies, E.; Müller, K. H.; Wong, W. C.; Pickard, C. J.; Reid, D. G.; Skepper, J. N.; Duer, M. J. Citrate bridges between mineral platelets in bone. Proc. Natl. Acad. Sci. USA 2014, 111, E1354–E1363.

[84]

Tintut, Y.; Demer, L. L. Effects of bioactive lipids and lipoproteins on bone. Trends Endocrinol. Metab. 2014, 25, 53–59.

[85]

During, A.; Penel, G.; Hardouin, P. Understanding the local actions of lipids in bone physiology. Prog. Lipid Res. 2015, 59, 126–146.

[86]

Schulz, J.; Pretzsch, M.; Khalaf, I.; Deiwick, A.; Scheidt, H. A.; Von Salis-Soglio, G.; Bader, A.; Huster, D. Quantitative monitoring of extracellular matrix production in bone implants by 13C and 31P solid-state nuclear magnetic resonance spectroscopy. Calcif. Tissue Int. 2007, 80, 275–285.

[87]

Reid, D. G.; Shanahan, C. M.; Duer, M. J.; Arroyo, L. G.; Schoppet, M.; Brooks, R. A.; Murray, R. C. Lipids in biocalcification: Contrasts and similarities between intimal and medial vascular calcification and bone by NMR. J. Lipid Res. 2012, 53, 1569–1575.

[88]

Mroue, K. H.; Xu, J. D.; Zhu, P. Z.; Morris, M. D.; Ramamoorthy, A. Selective detection and complete identification of triglycerides in cortical bone by high-resolution 1H MAS NMR spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 18687–18691.

[89]

Tiwari, N.; Rai, R.; Sinha, N. Water–lipid interactions in native bone by high-resolution solid-state NMR spectroscopy. Solid State Nucl. Magn. Reson. 2020, 107, 101666.

[90]

Iannucci, L. E.; Dranoff, C. S.; David, M. A.; Lake, S. P. Optical imaging of dynamic collagen processes in health and disease. Front. Mech. Eng. 2022, 8, 855271.

[91]

Surowiec, R. K.; Allen, M. R.; Wallace, J. M. Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target? Bone Rep. 2022, 16, 101161.

[92]

Granke, M.; Does, M. D.; Nyman, J. S. The role of water compartments in the material properties of cortical bone. Calcif. Tissue Int. 2015, 97, 292–307.

[93]

Ma, Y. J.; Jerban, S.; Jang, H.; Chang, D.; Chang, E. Y.; Du, J. Quantitative ultrashort echo time (UTE) magnetic resonance imaging of bone: An update. Front. Endocrinol. 2020, 11, 567417.

[94]

Chang, G.; Boone, S.; Martel, D.; Rajapakse, C. S.; Hallyburton, R. S.; Valko, M.; Honig, S.; Regatte, R. R. MRI assessment of bone structure and microarchitecture. J. Magn. Reson. Imaging 2017, 46, 323–337.

[95]

Yon, M.; Sarou-Kanian, V.; Scheler, U.; Bouler, J. M.; Bujoli, B.; Massiot, D.; Fayon, F. Solid-state 31P and 1H chemical MR micro-imaging of hard tissues and biomaterials with magic angle spinning at very high magnetic field. Sci. Rep. 2017, 7, 8224.

[96]

Soldati, E.; Rossi, F.; Vicente, J.; Guenoun, D.; Pithioux, M.; Iotti, S.; Malucelli, E.; Bendahan, D. Survey of MRI usefulness for the clinical assessment of bone microstructure. Int. J. Mol. Sci. 2021, 22, 2509.

[97]

Chow, W. Y.; Norman, B. P.; Roberts, N. B.; Ranganath, L. R.; Teutloff, C.; Bittl, R.; Duer, M. J.; Gallagher, J. A.; Oschkinat, H. Pigmentation chemistry and radical-based collagen degradation in alkaptonuria and osteoarthritic cartilage. Angew. Chem., Int. Ed. 2020, 59, 11937–11942.

[98]

Zeng, P. M.; Fu, Y.; Pang, Y. C.; He, T.; Wu, Y. Y.; Tang, R. K.; Qin, A.; Kong, X. Q. Solid-state nuclear magnetic resonance identifies abnormal calcium phosphate formation in diseased bones. ACS Biomater. Sci. Eng. 2021, 7, 1159–1168.

[99]

Maltsev, S.; Duer, M. J.; Murray, R. C.; Jaeger, C. A solid-state NMR comparison of the mineral structure in bone from diseased joints in the horse. J. Mater. Sci. 2007, 42, 8804–8810.

[100]

Singh, A. K.; Gajiwala, A. L.; Rai, R. K.; Khan, M. P.; Singh, C.; Barbhuyan, T.; Vijayalakshmi, S.; Chattopadhyay, N.; Sinha, N.; Kumar, A. et al. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts. Mater. Sci. Eng. C 2016, 62, 574–584.

[101]

Viani, A.; Mácová, P.; Machová, D.; Čendak, T. The assessment of bone deterioration with nuclear magnetic resonance spectroscopy in a multidisciplinary context: The case of the UNESCO world heritage site of Sedlec, Czechia. Archaeometry 2019, 61, 1144–1159.

[102]

Iline-Vul, T.; Adiram-Filiba, N.; Matlahov, I.; Geiger, Y.; Abayev, M.; Keinan-Adamsky, K.; Akbey, U.; Oschkinat, H.; Goobes, G. Understanding the roles of functional peptides in designing apatite and silica nanomaterials biomimetically using NMR techniques. Curr. Opin. Colloid Interface Sci. 2018, 33, 44–52.

Nano Research
Pages 2980-2990
Cite this article:
Xue H-D, Yin Y, He T, et al. Solid-state NMR studies on the organic matrix of bone. Nano Research, 2023, 16(2): 2980-2990. https://doi.org/10.1007/s12274-022-5034-7
Topics:

942

Views

3

Crossref

4

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 25 July 2022
Revised: 03 September 2022
Accepted: 09 September 2022
Published: 24 October 2022
© Tsinghua University Press 2022
Return