AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Thermal-annealing-regulated plasmonic enhanced fluorescence platform enables accurate detection of antigen/antibody against infectious diseases

Ying Yue1Jingjie Nan1,2Yuanyuan Che3Hongqin Xu4Weihong Sun1Feiran Zhang1Lei Wang1Wei Xu3( )Junqi Niu4( )Shoujun Zhu1,2( )Junhu Zhang1,2( )Bai Yang1,2
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, China
Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun 130021, China
Show Author Information

Graphical Abstract

Current plasmonic enhanced fluorescence (PEF) platforms suffer from stability drawbacks, hampering their clinical translation. We thus develop a two-step strategy including self-assembly of gold nanoparticles at the water-oil interface, followed by annealing at the optimal temperature, to manufacture a new-generation PEF platform, enabling accurate detection of both antigen and antibody with high sensitivity and low detection limit.

Abstract

Plasmonic enhanced fluorescence (PEF) technology is a powerful strategy to improve the sensitivity of immunofluorescence microarrays (IFMA), however, current approaches to constructing PEF platforms are either expensive/time-consuming or reliant on specialized instruments. Here, we develop a completely alternative approach relying on a two-step protocol that includes the self-assembly of gold nanoparticles (GNPs) at the water–oil interface and subsequent annealing-assisted regulation of gold nanogap. Our optimized thermal-annealing GNPs (TA-GNP) platform generates adequate hot spots, and thus produces high-density electromagnetic coupling, eventually enabling 240-fold fluorescence enhancement of probed dyes in the near-infrared region. For clinical detection of human samples, TA-GNP provides super-high sensitivity and low detection limits for both hepatitis B surface antigen and SARS-CoV-2 binding antibody, coupled with a much-improved detection dynamic range up to six orders of magnitude. With fast detection, high sensitivity, and low detection limit, TA-GNP could not only substantially improve the outcomes of IFMA-based precision medicine but also find applications in fields of proteomic research and clinical pathology.

Electronic Supplementary Material

Download File(s)
12274_2022_5035_MOESM1_ESM.pdf (959.9 KB)

References

[1]

Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H. L.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A. et al. Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2011, 2, 466.

[2]

Hou, S.; Chen, Y. H.; Lu, D. R.; Xiong, Q. R.; Lim, Y.; Duan, H. W. A self-assembled plasmonic substrate for enhanced fluorescence resonance energy transfer. Adv. Mater. 2020, 32, 1906475.

[3]

Liu, T. C.; Hsiung, J.; Zhao, S.; Kost, J.; Sreedhar, D.; Hanson, C. V.; Olson, K.; Keare, D.; Chang, S. T.; Bliden, K. P. et al. Quantification of antibody avidities and accurate detection of SARS-CoV-2 antibodies in serum and saliva on plasmonic substrates. Nat. Biomed. Eng. 2020, 4, 1188–1196.

[4]

Liu, B.; Li, Y. L.; Wan, H.; Wang, L.; Xu, W.; Zhu, S. J.; Liang, Y. Y.; Zhang, B.; Lou, J. T.; Dai, H. J. et al. High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Adv. Funct. Mater. 2016, 26, 7994–8002.

[5]

Xu, W.; Wang, L.; Zhang, R.; Sun, X. M.; Huang, L.; Su, H. Y.; Wei, X. B.; Chen, C. C.; Lou, J. T.; Dai, H. J. et al. Diagnosis and prognosis of myocardial infarction on a plasmonic chip. Nat. Commun. 2020, 11, 1654.

[6]

Zhang, B.; Kumar, R. B.; Dai, H. J.; Feldman, B. J. A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nat. Med. 2014, 20, 948–953.

[7]

Huang, Y.; Zhu, H. Protein array-based approaches for biomarker discovery in cancer. Genomics Proteomics Bioinf. 2017, 15, 73–81.

[8]

Bernard, A.; Michel, B.; Delamarche, E. Micromosaic immunoassays. Anal. Chem. 2001, 73, 8–12.

[9]

Rowe, C. A.; Scruggs, S. B.; Feldstein, M. J.; Golden, J. P.; Ligler, F. S. An array immunosensor for simultaneous detection of clinical analytes. Anal. Chem. 1999, 71, 433–439.

[10]

Jeong, Y.; Kook, Y. M.; Lee, K.; Koh, W. G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 2018, 111, 102–116.

[11]

Fothergill, S. M.; Joyce, C.; Xie, F. Metal enhanced fluorescence biosensing: From ultra-violet towards second near-infrared window. Nanoscale 2018, 10, 20914–20929.

[12]
Semeniak, D.; Cruz, D. F.; Chilkoti, A.; Mikkelsen, M. H. Plasmonic fluorescence enhancement in diagnostics for clinical tests at point-of-care: A review of recent technologies. Adv. Mater., in press, https://doi.org/10.1002/adma.202107986.
[13]

Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Plasmonic enhancement of molecular fluorescence. Nano Lett. 2007, 7, 496–501.

[14]

Zhang, B.; Price, J.; Hong, G. S.; Tabakman, S. M.; Wang, H. L.; Jarrell, J. A.; Feng, J.; Utz, P. J.; Dai, H. J. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Res. 2013, 6, 113–120.

[15]

Zhang, B.; Jarrell, J. A.; Price, J. V.; Tabakman, S. M.; Li, Y. G.; Gong, M.; Hong, G. S.; Feng, J.; Utz, P. J.; Dai, H. J. An integrated peptide-antigen microarray on plasmonic gold films for sensitive human antibody profiling. PLoS One 2013, 8, e71043.

[16]

Koh, B.; Li, X. Y.; Zhang, B.; Yuan, B.; Lin, Y.; Antaris, A. L.; Wan, H.; Gong, M.; Yang, J.; Zhang, X. D. et al. Visible to near-infrared fluorescence enhanced cellular imaging on plasmonic gold chips. Small 2016, 12, 457–465.

[17]

Li, X. Y.; Pomares, C.; Gonfrier, G.; Koh, B.; Zhu, S. J.; Gong, M.; Montoya, J. G.; Dai, H. J. Multiplexed anti-Toxoplasma IgG, IgM, and IgA assay on plasmonic gold chips: Towards making mass screening possible with dye test precision. J. Clin. Microbiol. 2016, 54, 1726–1733.

[18]

Zhang, B.; Pinsky, B. A.; Ananta, J. S.; Zhao, S.; Arulkumar, S.; Wan, H.; Sahoo, M. K.; Abeynayake, J.; Waggoner, J. J.; Hopes, C. et al. Diagnosis of Zika virus infection on a nanotechnology platform. Nat. Med. 2017, 23, 548–550.

[19]

Li, X. Y.; Kuznetsova, T.; Cauwenberghs, N.; Wheeler, M.; Maecker, H.; Wu, J. C.; Haddad, F.; Dai, H. J. Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive heart disease. Proc. Natl. Acad. Sci. USA 2017, 114, 7089–7094.

[20]

Wan, H.; Merriman, C.; Atkinson, M. A.; Wasserfall, C. H.; Mcgrail, K. M.; Liang, Y. Y.; Fu, D.; Dai, H. J. Proteoliposome-based full-length ZnT8 self-antigen for type 1 diabetes diagnosis on a plasmonic platform. Proc. Natl. Acad. Sci. USA 2017, 114, 10196–10201.

[21]
Shan, D. Y.; Hsiung, J.; Bliden, K. P.; Zhao, S.; Liao, T.; Wang, G. X.; Tan, S. L.; Liu, T. C.; Sreedhar, D.; Kost, J. et al. A new saliva-based lateral-flow SARS-CoV-2 IgG antibody test for mRNA vaccination. medRxiv, in press, https://doi.org/10.1101/2021.06.11.21258769.
[22]
Bliden, K. P.; Liu, T. C.; Sreedhar, D.; Kost, J.; Hsiung, J.; Zhao, S.; Shan, D. Y.; Usman, A.; Walia, N.; Cho, A. et al. Evolution of anti-SARS-CoV-2 IgG antibody and IgG avidity post Pfizer and moderna mRNA vaccinations. medRxiv, in press, https://doi.org/10.1101/2021.06.28.21259338.
[23]

Willets, K. A.; Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297.

[24]

Lim, D. K.; Jeon, K. S.; Hwang, J. H.; Kim, H.; Kwon, S.; Suh, Y. D.; Nam, J. M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 2011, 6, 452–460.

[25]

Nam, J. M.; Oh, J. W.; Lee, H.; Suh, Y. D. Plasmonic nanogap-enhanced Raman scattering with nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755.

[26]

Zhou, L. C.; Ding, F.; Chen, H.; Ding, W.; Zhang, W. H.; Chou, S. Y. Enhancement of immunoassay’s fluorescence and detection sensitivity using three-dimensional plasmonic nano-antenna-dots array. Anal. Chem. 2012, 84, 4489–4495.

[27]

Wy, Y.; Jung, H.; Hong, J. W.; Han, S. W. Exploiting plasmonic hot spots in Au-based nanostructures for sensing and photocatalysis. Acc. Chem. Res. 2022, 55, 831–843.

[28]

Song, B. X.; Jiang, Z. H.; Liu, Z. R.; Wang, Y. X.; Liu, F. X.; Cronin, S. B.; Yang, H.; Meng, D. M.; Chen, B. Y.; Hu, P. et al. Probing the mechanisms of strong fluorescence enhancement in plasmonic nanogaps with sub-nanometer precision. ACS Nano 2020, 14, 14769–14778.

[29]

Kim, J. M.; Lee, C.; Lee, Y.; Lee, J.; Park, S. J.; Park, S.; Nam, J. M. Synthesis, assembly, optical properties, and sensing applications of plasmonic gap nanostructures. Adv. Mater. 2021, 33, 2006966.

[30]

Chikkaraddy, R.; de Nijs, B.; Benz, F.; Barrow, S. J.; Scherman, O. A.; Rosta, E.; Demetriadou, A.; Fox, P.; Hess, O.; Baumberg, J. J. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 2016, 535, 127–130.

[31]

Bahk, Y. M.; Kim, D. S.; Park, H. R. Large-area metal gaps and their optical applications. Adv. Opt. Mater. 2019, 7, 1800426.

[32]

Chen, X. S.; Park, H. R.; Pelton, M.; Piao, X. J.; Lindquist, N. C.; Im, H.; Kim, Y. J.; Ahn, J. S.; Ahn, K. J.; Park, N. et al. Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat. Commun. 2013, 4, 2361.

[33]

Duan, H. G.; Fernández-Domínguez, A. I.; Bosman, M.; Maier, S. A.; Yang, J. K. W. Nanoplasmonics: Classical down to the nanometer scale. Nano Lett. 2012, 12, 1683–1689.

[34]

Chen, Y. F. Nanofabrication by electron beam lithography and its applications: A review. Microelectron. Eng. 2015, 135, 57–72.

[35]

Melli, M.; Polyakov, A.; Gargas, D.; Huynh, C.; Scipioni, L.; Bao, W.; Ogletree, D. F.; Schuck, P. J.; Cabrini, S.; Weber-Bargioni, A. Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography. Nano Lett. 2013, 13, 2687–2691.

[36]

Kollmann, H.; Piao, X.; Esmann, M.; Becker, S. F.; Hou, D. C.; Huynh, C.; Kautschor, L. O.; Bösker, G.; Vieker, H.; Beyer, A. et al. Toward plasmonics with nanometer precision: Nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett. 2014, 14, 4778–4784.

[37]

Wang, Y. D.; Abb, M.; Boden, S. A.; Aizpurua, J.; de Groot, C. H.; Muskens, O. L. Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling. Nano Lett. 2013, 13, 5647–5653.

[38]

Lin, Q. Y.; Mason, J. A.; Li, Z. Y.; Zhou, W. J.; O’Brien, M. N.; Brown, K. A.; Jones, M. R.; Butun, S.; Lee, B.; Dravid, V. P. et al. Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science 2018, 359, 669–672.

[39]

Park, Y. K.; Park, S. Directing close-packing of midnanosized gold nanoparticles at a water/hexane interface. Chem. Mater. 2008, 20, 2388–2393.

[40]

Song, L. P.; Huang, Y. J.; Nie, Z. H.; Chen, T. Macroscopic two-dimensional monolayer films of gold nanoparticles: Fabrication strategies, surface engineering and functional applications. Nanoscale 2020, 12, 7433–7460.

[41]

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 1973, 241, 20–22.

[42]

Zhang, X. M.; Zhang, J. H.; Wang, H.; Hao, Y. D.; Zhang, X.; Wang, T. Q.; Wang, Y. N.; Zhao, R.; Zhang, H.; Yang, B. Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: Morphology and refractive index sensitivity. Nanotechnology 2010, 21, 465702.

[43]

Xu, R.; Feng, A. L.; Li, X. D.; Hu, J.; Lin, M. Monitoring hepatitis b by using point-of-care testing: Biomarkers, current technologies, and perspectives. Expert Rev. Mol. Diagn. 2021, 21, 195–211.

Nano Research
Pages 3215-3223
Cite this article:
Yue Y, Nan J, Che Y, et al. Thermal-annealing-regulated plasmonic enhanced fluorescence platform enables accurate detection of antigen/antibody against infectious diseases. Nano Research, 2023, 16(2): 3215-3223. https://doi.org/10.1007/s12274-022-5035-6
Topics:

1160

Views

6

Crossref

7

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 28 July 2022
Revised: 04 September 2022
Accepted: 09 September 2022
Published: 22 October 2022
© Tsinghua University Press 2022
Return