Graphical Abstract

The successful implementation of bioelectronic devices attached to living organism hinges on a number of material and device characteristics, including not only electrical and mechanical performances to gather physiological signals from living organism thus enabling status monitoring, but also permeability or breathability for gas/nutrient exchange between living organisms and surroundings to ensure minimum perturbation of the intrinsic biological function. However, most bioelectronic devices built on planar polymeric substrates, such as polydimethylsiloxane (PDMS), polyurethane (PU), and polyimide (PI), lack efficient gas permeability, which may hinder the emission of volatile compounds from the surface of living organism, affecting the natural metabolism and reducing the comfort of wearing. Thus, achieving permeability or breathability in bioelectronic devices is a significant challenge. Currently, the devices made of gas-permeable materials with porous structures, that combine electronic components with daily garments, such as fibric and textile, offer exciting opportunities for breathable electronics. In this review, several types of gas-permeable materials with their synthesis and processing routes are outlines. Then, two methods for measuring water vapor transmission rate of materials are discussed in depth. Finally, recent progress in the use of gas-permeable materials for the applications of plant- and skin-attached electronics is summarized systematically.
Almuslem, A. S.; Shaikh, S. F.; Hussain, M. M. Flexible and stretchable electronics for harsh-environmental applications. Adv. Mater. Technol. 2019, 4, 1900145.
Shaikh, S. F.; Hussain, M. M. Multisensory graphene-skin for harsh-environment applications. Appl. Phys. Lett. 2020, 117, 074101.
Phan, H. P.; Dinh, T.; Nguyen, T. K.; Qamar, A.; Nguyen, T.; Dau, V. T.; Han, J. S.; Dao, D. V.; Nguyen, N. T. High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments. J. Hazard. Mater. 2020, 394, 122486.
Mogili, U. M. R.; Deepak, B. B. V. L. Review on application of drone systems in precision agriculture. Procedia Comput. Sci. 2018, 133, 502–509.
Schellberg, J.; Hill, M. J.; Gerhards, R.; Rothmund, M.; Braun, M. Precision agriculture on grassland: Applications, perspectives and constraints. Eur. J. Agron. 2008, 29, 59–71.
Hunter, E. E.; Brink, E. W.; Steager, E. B.; Kumar, V. Toward soft micro bio robots for cellular and chemical delivery. IEEE Rob. Autom. Lett. 2018, 3, 1592–1599.
Romano, D.; Donati, E.; Benelli, G.; Stefanini, C. A review on animal-robot interaction: From bio-hybrid organisms to mixed societies. Biol. Cybern. 2019, 113, 201–225.
Hong, W.; Lee, W. G. Wearable sensors for continuous oral cavity and dietary monitoring toward personalized healthcare and digital medicine. Analyst 2020, 145, 7796–7808.
Yan, Z. C.; Xu, D.; Lin, Z. Y.; Wang, P. Q.; Cao, B. C.; Ren, H. Y.; Song, F.; Wan, C. Z.; Wang, L. Y.; Zhou, J. X. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 2022, 375, 852–859.
Zhao, F. N.; He, J. W.; Li, X. J.; Bai, Y. P.; Ying, Y. B.; Ping, J. F. Smart plant-wearable biosensor for in-situ pesticide analysis. Biosens. Bioelectron. 2020, 170, 112636.
Nassar, J. M.; Khan, S. M.; Villalva, D. R.; Nour, M. M.; Almuslem, A. S.; Hussain, M. M. Compliant plant wearables for localized microclimate and plant growth monitoring. npj Flexible Electron. 2018, 2, 24.
Chen, W.; Yang, S. Q.; Wang, H. T.; Yang, K. T.; Wu, X. L.; Gao, F.; Zheng, B. J.; Qian, K.; Yao, W.; Zhang, T. et al. Flexible, stretchable, waterproof (IPX7) electro-thermal films based on graphite nanoplatelets & polyurethane nanocomposites for wearable heaters. Chem. Eng. J. 2022, 431, 133990.
Yin, S. H.; Ibrahim, H.; Schnable, P. S.; Castellano, M. J.; Dong, L. A field-deployable, wearable leaf sensor for continuous monitoring of vapor-pressure deficit. Adv. Mater. Technol. 2021, 6, 2001246.
Sun, B. H.; McCay, R. N.; Goswami, S.; Xu, Y. D.; Zhang, C.; Ling, Y.; Lin, J.; Yan, Z. Gas-permeable, multifunctional on-skin electronics based on laser-induced porous graphene and sugar-templated elastomer sponges. Adv. Mater. 2018, 30, 1804327.
Xu, T. Z.; Ji, G. J.; Li, H.; Li, J. D.; Chen, Z.; Awuye, D. E.; Huang, J. Preparation and applications of electrospun nanofibers for wearable biosensors. Biosensors 2022, 12, 177.
Lee, S.; Sasaki, D.; Kim, D.; Mori, M.; Yokota, T.; Lee, H.; Park, S.; Fukuda, K.; Sekino, M.; Matsuura, K. et al. Ultrasoft electronics to monitor dynamically pulsing cardiomyocytes. Nat. Nanotechnol. 2019, 14, 156–160.
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.
Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398.
Nayak, R.; Padhye, R.; Kyratzis, I. L.; Truong, Y. B.; Arnold, L. Recent advances in nanofibre fabrication techniques. Text. Res. J. 2012, 82, 129–147.
Li, Q.; Duan, T. T.; Shao, J.; Yu, H. B. Fabrication method for structured porous polydimethylsiloxane (PDMS). J. Mater. Sci. 2018, 53, 11873–11882.
Bormashenko, E. Breath-figure self-assembly, a versatile method of manufacturing membranes and porous structures: Physical, chemical and technological aspects. Membranes 2017, 7, 45.
Song, Y.; Chen, H. T.; Su, Z. M.; Chen, X. X.; Miao, L. M.; Zhang, J. X.; Cheng, X. L.; Zhang, H. X. Highly compressible integrated supercapacitor-piezoresistance-sensor system with CNT-PDMS sponge for health monitoring. Small 2017, 13, 1702091.
Zhou, W. X.; Yao, S. S.; Wang, H. Y.; Du, Q. C.; Ma, Y. W.; Zhu, Y. Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 2020, 14, 5798–5805.
Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254–258.
Liu, T. Y.; Liu, G. L. Porous organic materials offer vast future opportunities. Nat. Commun. 2020, 11, 4984.
Loh, Q. L.; Choong, C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev., 2013, 19, 485–502.
Xu, Z. Y.; Li, J. Y.; Zhou, H.; Jiang, X. D.; Yang, C.; Wang, F.; Pan, Y. Y.; Li, N. N.; Li, X. Y.; Shi, L. N. et al. Morphological and swelling behavior of cellulose nanofiber (CNF)/poly (vinyl alcohol) (PVA) hydrogels: Poly (ethylene glycol) (PEG) as porogen. RSC Adv. 2016, 6, 43626–43633.
Zhai, W.; Xia, Q. J.; Zhou, K. K.; Yue, X. Y.; Ren, M. N.; Zheng, G. Q.; Dai, K.; Liu, C. T.; Shen, C. Y. Multifunctional flexible carbon black/polydimethylsiloxane piezoresistive sensor with ultrahigh linear range, excellent durability and oil/water separation capability. Chem. Eng. J. 2019, 372, 373–382.
Choi, S. J.; Kwon, T. H.; Im, H.; Moon, D. I.; Baek, D. J.; Seol, M. L.; Duarte, J. P.; Choi, Y. K. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl. Mater. Interfaces 2011, 3, 4552–4556.
Zhao, X.; Li, L. X.; Li, B. C.; Zhang, J. P.; Wang, A. Q. Durable superhydrophobic/superoleophilic PDMS sponges and their applications in selective oil absorption and in plugging oil leakages. J. Mater. Chem. A 2014, 2, 18281–18287.
Koenig, K.; Beukenberg, K.; Langensiepen, F.; Seide, G. A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers. Biomater. Res. 2019, 23, 10.
Zhu, D. Y.; Handschuh-Wang, S.; Zhou, X. C. Recent progress in fabrication and application of polydimethylsiloxane sponges. J. Mater. Chem. A 2017, 5, 16467–16497.
Lee, Y.; Lee, S.; Kim, H. S.; Moon, J. T.; Joo, J. B.; Choi, I. Multifunctional and recyclable TiO2 hybrid sponges for efficient sorption, detection, and photocatalytic decomposition of organic pollutants. J. Ind. Eng. Chem. 2019, 73, 328–335.
He, X. M.; Mu, X. J.; Wen, Q.; Wen, Z. Y.; Yang, J.; Hu, C. G.; Shi, H. F. Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Res. 2016, 9, 3714–3724.
Kong, L.; Yin, X. W.; Han, M. K.; Yuan, X. Y.; Hou, Z. X.; Ye, F.; Zhang, L. T.; Cheng, L. F.; Xu, Z. W.; Huang, J. F. Macroscopic bioinspired graphene sponge modified with in-situ grown carbon nanowires and its electromagnetic properties. Carbon 2017, 111, 94–102.
Pandey, K.; Bindra, H. S.; Jain, S.; Nayak, R. Sustainable lotus leaf wax nanocuticles integrated polydimethylsiloxane sorbent for instant removal of oily waste from water. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 634, 127937.
Wang, J. K.; Guo, J. H.; Si, P. X.; Cai, W. P.; Wang, Y. M.; Wu, G. H. Polydopamine-based synthesis of an In(OH)3-PDMS sponge for ammonia detection by switching surface wettability. RSC Adv. 2016, 6, 4329–4334.
Rattanaumpa, T.; Naowanon, W.; Amnuaypanich, S.; Amnuaypanich, S. Polydimethylsiloxane sponges incorporated with mesoporous silica nanoparticles (PDMS/H-MSNs) and their selective solvent absorptions. Ind. Eng. Chem. Res. 2019, 58, 21142–21154.
Charara, M.; Luo, W. Y.; Saha, M. C.; Liu, Y. T. Investigation of lightweight and flexible carbon nanofiber/poly dimethylsiloxane nanocomposite sponge for piezoresistive sensor application. Adv. Eng. Mater. 2019, 21, 1801068.
Jung, S. J.; Shin, J.; Lim, S. S.; Kwon, B.; Baek, S. H.; Kim, S. K.; Park, H. H.; Kim, J. S. Porous organic filler for high efficiency of flexible thermoelectric generator. Nano Energy 2021, 81, 105604.
Li, Z.; Hu, K.; Yang, M. Y.; Zou, Y.; Yang, J. B.; Yu, M.; Wang, H. Y.; Qu, X. C.; Tan, P. C.; Wang, C. et al. Elastic Cu@PPy sponge for hybrid device with energy conversion and storage. Nano Energy 2019, 58, 852–861.
Nikpour, S.; Ansari-Asl, Z.; Sedaghat, T.; Hoveizi, E. Curcumin-loaded Fe-MOF/PDMS porous scaffold: Fabrication, characterization, and biocompatibility assessment. J. Ind. Eng. Chem. 2022, 110, 188–197.
Kenry; Lim, C. T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017, 70, 1–17.
Liu, W. Y.; Thomopoulos, S.; Xia, Y. N. Electrospun nanofibers for regenerative medicine. Adv. Healthc. Mater. 2012, 1, 10–25.
Wu, C. M.; Chiou, H. G.; Lin, S. L.; Lin, J. M. Effects of electrostatic polarity and the types of electrical charging on electrospinning behavior. J. Appl. Polym. Sci. 2012, 126, E89–E97.
Liu, S. L.; Huang, Y. Y.; Zhang, H. D.; Sun, B.; Zhang, J. C.; Long, Y. Z. Needleless electrospinning for large scale production of ultrathin polymer fibres. Mater. Res. Innov. 2014, 18, S4-833–S834-837.
Song, J.; Kim, M.; Lee, H. Recent advances on nanofiber fabrications: Unconventional state-of-the-art spinning techniques. Polymers 2020, 12, 1386.
Lee, H.; Kim, I. S. Nanofibers: Emerging progress on fabrication using mechanical force and recent applications. Polym. Rev. 2018, 58, 688–716.
Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F. Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002, 35, 8456–8466.
Zhou, F. L.; Gong, R. H.; Porat, I. Mass production of nanofibre assemblies by electrostatic spinning. Polym. Int. 2009, 58, 331–342.
Wang, X. F.; Hsiao, B. S. Electrospun nanofiber membranes. Curr. Opin. Chem. Eng. 2016, 12, 62–81.
Osada, M.; Sasaki, T. Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 2012, 24, 210–228.
Zhang, S.; Liu, C.; Sun, X.; Huang, W. J. Current development of materials science and engineering towards epidermal sensors. Prog. Mater. Sci. 2022, 128, 100962.
Xiong, P.; Sun, B.; Sakai, N.; Ma, R. Z.; Sasaki, T.; Wang, S. J.; Zhang, J. Q.; Wang, G. X. 2D superlattices for efficient energy storage and conversion. Adv. Mater. 2020, 32, 1902654.
An, Y. L.; Tian, Y.; Wei, C. L.; Zhang, Y. C.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Recent advances and perspectives of 2D silicon: Synthesis and application for energy storage and conversion. Energy Storage Mater. 2020, 32, 115–150.
Lin, Z. Y.; Huang, Y.; Duan, X. F. Van der Waals thin-film electronics. Nat. Electron. 2019, 2, 378–388.
Liu, F. Mechanical exfoliation of large area 2D materials from vdW crystals. Prog. Surf. Sci. 2021, 96, 100626.
Liu, F.; Wu, W. J.; Bai, Y. S.; Chae, S. H.; Li, Q. Y.; Wang, J.; Hone, J.; Zhu, X. Y. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 2020, 367, 903–906.
Hu, Z.; Liu, Z. B.; Tian, J. G. Stacking of exfoliated two-dimensional materials: A review. Chin. J. Chem. 2020, 38, 981–995.
Lin, Z. Y.; Wan, Z.; Song, F.; Huang, B. L.; Jia, C. C.; Qian, Q.; Kang, J. S.; Wu, Y. T.; Yan, X. X.; Peng, L. L. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 2021, 7, 1887–1902.
Zhang, X.; Lai, Z. C.; Tan, C. L.; Zhang, H. Solution-processed two-dimensional MoS2 nanosheets: Preparation, hybridization, and applications. Angew. Chem., Int. Ed. 2016, 55, 8816–8838.
Iwanaga, H.; Shiratsuchi, K.; Yamazaki, H. Fabrication and application of honeycomb film. Fujifilm Res. Dev. 2009, 54, 43–47.
Dou, Y. Y.; Jin, M. L.; Zhou, G. F.; Shui, L. L. Breath figure method for construction of honeycomb films. Membranes 2015, 5, 399–424.
Zhang, A. J.; Bai, H.; Li, L. Breath figure: A nature-inspired preparation method for ordered porous films. Chem. Rev. 2015, 115, 9801–9868.
Ding, J. Y.; Zhang, A. J.; Bai, H.; Li, L.; Li, J.; Ma, Z. Breath figure in non-aqueous vapor. Soft Matter 2013, 9, 506–514.
Stenzel, M. H.; Barner-Kowollik, C.; Davis, T. P. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 2363–2375.
Hou, Q. P.; Grijpma, D. W.; Feijen, J. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials 2003, 24, 1937–1947.
Chen, M. T.; Zhang, L.; Duan, S. S.; Jing, S. L.; Jiang, H.; Li, C. Z. Highly stretchable conductors integrated with a conductive carbon nanotube/graphene network and 3D porous poly (dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556.
Kim, D. H.; Jung, Y.; Jung, K.; Kwak, D. H.; Park, D. M. ;Shin, M. G.; Tak, H. J.; Ko, J. S. Hollow polydimethylsiloxane (PDMS) foam with a 3D interconnected network for highly sensitive capacitive pressure sensors. Micro Nano Syst. Lett. 2020, 8, 24.
Wu, D. S.; Feng, Q.; Xu, T.; Wei, A. F.; Fong, H. Electrospun blend nanofiber membrane consisting of polyurethane, amidoxime polyarcylonitrile, and β-cyclodextrin as high-performance carrier/support for efficient and reusable immobilization of laccase. Chem. Eng. J. 2018, 331, 517–526.
Yu, S. W.; Huang, Q. L.; Cheng, J. X.; Huang, Y.; Xiao, C. F. Pore structure optimization of electrospun PTFE nanofiber membrane and its application in membrane emulsification. Sep. Purif. Technol. 2020, 251, 117297.
Xia, J.; Zhang, H.; Yu, F. Q.; Pei, Y.; Luo, X. G. Superclear, porous cellulose membranes with chitosan-coated nanofibers for visualized cutaneous wound healing dressing. ACS Appl. Mater. Interfaces 2020, 12, 24370–24379.
Huang, Y. L.; Shi, R.; Gong, M.; Zhang, J. S.; Li, W. Y.; Song, Q. P.; Wu, C. G.; Tian, W. Icariin-loaded electrospun PCL/gelatin sub-microfiber mat for preventing epidural adhesions after laminectomy. Int. J. Nanomed. 2018, 13, 4831.
Xu, X.; Heng, L. P.; Zhao, X. J.; Ma, J.; Lin, L.; Jiang, L. Multiscale bio-inspired honeycomb structure material with high mechanical strength and low density. J. Mater. Chem. 2012, 22, 10883–10888.
Wu, J. W.; Hu, R.; Zeng, S. N.; Xi, W.; Huang, S. Y.; Deng, J. H.; Tao, G. M. Flexible and robust biomaterial microstructured colored textiles for personal thermoregulation. ACS Appl. Mater. Interfaces 2020, 12, 19015–19022.
Wu, B. Z.; Zhou, M. M.; Zhang, W. L.; Liang, Y.; Li, F. T.; Li, G. T. Combined use of breath figures process and microphase separation of PS-b-P4VP to produce stable porous nanomaterials. RSC Adv. 2017, 7, 24914–24924.
Wu, C. H.; Lu, C. S.; Chen, W. L.; Tung, S. H.; Jeng, R. J. Honeycomb surface with shape memory behavior fabricated via breath figure process. Macromol. Mater. Eng. 2018, 303, 1700433.
Steindl, P.; Decker, H.; Retzl, B.; Jiang, Q. X.; Menner, A.; Bismarck, A. Emulsion-templated flexible epoxy foams. Polymer 2021, 215, 123380.
Davoodi, E.; Montazerian, H.; Khademhosseini, A.; Toyserkani, E. Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible tissue scaffolds. Acta Biomater. 2020, 117, 261–272.
Mu, X.; Bertron, T.; Dunn, C.; Qiao, H.; Wu, J.; Zhao, Z.; Saldana, C.; Qi, H. J. Porous polymeric materials by 3D printing of photocurable resin. Mater. Horiz. 2017, 4, 442–449.
Song, P.; Zhou, C. C.; Fan, H. Y.; Zhang, B. Q.; Pei, X.; Fan, Y. J.; Jiang, Q.; Bao, R. Y.; Yang, Q.; Dong, Z. H. et al. Novel 3D porous biocomposite scaffolds fabricated by fused deposition modeling and gas foaming combined technology. Compos. B. Eng. 2018, 152, 151–159.
Hu, Y.; Topolkaraev, V.; Hiltner, A.; Baer, E. Measurement of water vapor transmission rate in highly permeable films. J. Appl. Polym. Sci. 2001, 81, 1624–1633.
Huang, J. H.; Chen, Y. B. Effects of air temperature, relative humidity, and wind speed on water vapor transmission rate of fabrics. Text. Res. J. 2010, 80, 422–428.
Kaboorani, A.; Auclair, N.; Riedl, B.; Landry, V. Physical and morphological properties of UV-cured cellulose nanocrystal (CNC) based nanocomposite coatings for wood furniture. Prog. Org. Coat. 2016, 93, 17–22.
Sadeghi, S.; Nourmohammadi, J.; Ghaee, A.; Soleimani, N. Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. Int. J. Biol. Macromol. 2020, 147, 1239–1247.
Baschetti, M. G.; Minelli, M. Test methods for the characterization of gas and vapor permeability in polymers for food packaging application: A review. Polym. Test. 2020, 89, 106606.
Yin, X. Q.; Zhang, J.; Xu, J. H.; Tian, M.; Li, L. Y.; Tan, L.; Li, Z. M. Fast-acting and highly rechargeable antibacterial composite nanofibrous membrane for protective applications. Compos. Sci. Technol. 2021, 202, 108574.
Yin, X. Q.; Wen, Y.; Li, Y. J.; Liu, P. Q.; Li, Z. M.; Shi, Y. D.; Lan, J. W.; Guo, R. H.; Tan, L. Facile fabrication of sandwich structural membrane with a hydrogel nanofibrous mat as inner layer for wound dressing application. Front. Chem. 2018, 6, 490.
Lu, Y. Y.; Xu, K. C.; Zhang, L. S.; Deguchi, M.; Shishido, H.; Arie, T.; Pan, R. H.; Hayashi, A.; Shen, L.; Akita, S. et al. Multimodal plant healthcare flexible sensor system. ACS Nano 2020, 14, 10966–10975.
Chai, Y. F.; Chen, C. Y.; Luo, X.; Zhan, S. J.; Kim, J.; Luo, J. K.; Wang, X. Z.; Hu, Z. Y.; Ying, Y. B.; Liu, X. J. Cohabiting plant-wearable sensor in situ monitors water transport in plant. Adv. Sci. 2021, 8, 2003642.
Qu, C. C.; Sun, X. Y.; Sun, W. X.; Cao, L. X.; Wang, X. Q.; He, Z. Z. Flexible wearables for plants. Small 2021, 17, 2104482.
Li, W. L.; Matsuhisa, N.; Liu, Z. Y.; Wang, M.; Luo, Y. F.; Cai, P. Q.; Chen, G.; Zhang, F. L.; Li, C. C.; Liu, Z. H. et al. An on-demand plant-based actuator created using conformable electrodes. Nat. Electron. 2021, 4, 134–142.
Lan, L. Y.; Xiong, J. Q.; Gao, D. C.; Li, Y.; Chen, J.; Lv, J.; Ping, J. F.; Ying, Y. B.; Lee, P. S. Breathable nanogenerators for an on-plant self-powered sustainable agriculture system. ACS Nano 2021, 15, 5307–5315.
Lou, Z.; Wang, L. L.; Jiang, K.; Wei, Z. M.; Shen, G. Z. Reviews of wearable healthcare systems: Materials, devices and system integration. Mater. Sci. Eng.: R: Rep. 2020, 140, 100523.
Wang, Y.; Lee, S.; Yokota, T.; Wang, H. Y.; Jiang, Z.; Wang, J. B.; Koizumi, M.; Someya, T. A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints. Sci. Adv. 2020, 6, eabb7043.
Kottner, J.; Lichterfeld, A.; Blume-Peytavi, U. Transepidermal water loss in young and aged healthy humans: A systematic review and meta-analysis. Arch. Dermatol. Res. 2013, 305, 315–323.
Jayathilaka, W. A. D. M.; Qi, K.; Qin, Y. L.; Chinnappan, A.; Serrano-García, W.; Baskar, C.; Wang, H. B.; He, J. X.; Cui, S. Z.; Thomas, S. W. et al. Significance of nanomaterials in wearables: A review on wearable actuators and sensors. Adv. Mater. 2019, 31, 1805921.
Zhang, Y. Y.; Zhang, T. Y.; Huang, Z. D.; Yang, J. A new class of electronic devices based on flexible porous substrates. Adv. Sci. 2022, 9, 2105084.
Wu, X. D.; Han, Y. Y.; Zhang, X. X.; Zhou, Z. H.; Lu, C. H. Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 2016, 26, 6246–6256.
Qiao, Y. C.; Li, X. S.; Jian, J. M.; Wu, Q.; Wei, Y. H.; Shuai, H.; Hirtz, T.; Zhi, Y.; Deng, G.; Wang, Y. F. et al. Substrate-free multilayer graphene electronic skin for intelligent diagnosis. ACS Appl. Mater. Interfaces 2020, 12, 49945–49956.
Trung, T. Q.; Le, H. S.; Dang, T. M. L.; Ju, S.; Park, S. Y.; Lee, N. E. Freestanding, fiber-based, wearable temperature sensor with tunable thermal index for healthcare monitoring. Adv. Healthc. Mater. 2018, 7, 1800074.
Xu, Y. D.; Sun, B. H.; Ling, Y.; Fei, Q. H.; Chen, Z. Y.; Li, X. P.; Guo, P. J.; Jeon, N.; Goswami, S.; Liao, Y. X. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl. Acad. Sci. USA 2020, 117, 205–213.
Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.
Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.
Peng, X.; Dong, K.; Ning, C.; Cheng, R. W.; Yi, J.; Zhang, Y. H.; Sheng, F. F.; Wu, Z. Y.; Wang, Z. L. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea-hypopnea syndrome diagnosing. Adv. Funct. Mater. 2021, 31, 2103559.
Lou, M. N.; Abdalla, I.; Zhu, M. M.; Wei, X. D.; Yu, J. Y.; Li, Z. L.; Ding, B. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl. Mater. Interfaces 2020, 12, 19965–19973.
Yeon, H.; Lee, H.; Kim, Y.; Lee, D.; Lee, Y.; Lee, J. S.; Shin, J.; Choi, C.; Kang, J. H.; Suh, J. M. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 2021, 7, eabg8459.
Li, Y. L.; Liu, Y. H.; Chen, L. S.; Xu, J. L. A conformable, gas-permeable, and transparent skin-like micromesh architecture for glucose monitoring. Adv. Healthc. Mater. 2021, 10, 2100046.
Wang, L.; Wang, L. Y.; Zhang, Y.; Pan, J.; Li, S. Y.; Sun, X. M.; Zhang, B.; Peng, H. S. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 2018, 28, 1804456.
Zhao, Z. Z.; Huang, Q. Y.; Yan, C.; Liu, Y. D.; Zeng, X. W.; Wei, X. D.; Hu, Y. F.; Zheng, Z. J. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 2020, 70, 104528.
Ma, Z. J.; Huang, Q. Y.; Xu, Q.; Zhuang, Q. N.; Zhao, X.; Yang, Y. H.; Qiu, H.; Yang, Z. L.; Wang, C.; Chai, Y. et al. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat. Mater. 2021, 20, 859–868.
Yang, Q.; Liang, Q.; Wang, L. M. Investigation of self-adaptive breathable nano-TiO2/PU membrane with water vapor transmission. AATCC J. Res. 2021, 8, 72–77.
Qian, W.; Hu, X. H.; He, W. F.; Zhan, R. X.; Liu, M. L.; Zhou, D. J.; Huang, Y.; Hu, X. L.; Wang, Z. H.; Fei, G. Polydimethylsiloxane incorporated with reduced graphene oxide (rGO) sheets for wound dressing application: Preparation and characterization. Colloids Surf. B 2018, 166, 61–71.
Qiu, Q.; Zhu, M. M.; Li, Z. L.; Qiu, K. L.; Liu, X. Y.; Yu, J. Y.; Ding, B. Highly flexible, breathable, tailorable and washable power generation fabrics for wearable electronics. Nano Energy 2019, 58, 750–758.
Li, M. F.; Chang, K. Q.; Zhong, W. B.; Xiang, C. X.; Wang, W.; Liu, Q. Z.; Liu, K.; Wang, Y. D.; Lu, Z. T.; Wang, D. A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane. Appl. Surf. Sci. 2019, 486, 249–256.
Li, Z. L.; Zhu, M. M.; Shen, J. L.; Qiu, Q.; Yu, J. Y.; Ding, B. All-fiber structured electronic skin with high elasticity and breathability. Adv. Funct. Mater. 2020, 30, 1908411.
Yang, X. Q.; Li, L. H.; Wang, S. Q.; Lu, Q. F.; Bai, Y. Y.; Sun, F. Q.; Li, T.; Li, Y.; Wang, Z. H.; Zhao, Y. Y. et al. Ultrathin, stretchable, and breathable epidermal electronics based on a facile bubble blowing method. Adv. Electron. Mater. 2020, 6, 2000306.
Memon, A. W.; de Paula, I. L.; Malengier, B.; Vasile, S.; Van Torre, P.; Van Langenhove, L. Breathable textile rectangular ring microstrip patch antenna at 2.45 GHz for wearable applications. Sensors 2021, 21, 1635.
Guo, Y. X.; Zhou, W.; Wang, L. H.; Dong, Y. P.; Yu, J. Y.; Li, X. R.; Ding, B. Stretchable PDMS embedded fibrous membranes based on an ethanol solvent system for waterproof and breathable applications. ACS Appl. Bio Mater. 2019, 2, 5949–5956.
Sheng, J. L.; Zhang, M.; Xu, Y.; Yu, J. Y.; Ding, B. Tailoring water-resistant and breathable performance of polyacrylonitrile nanofibrous membranes modified by polydimethylsiloxane. ACS Appl. Mater. Interfaces 2016, 8, 27218–27226.
Zhou, W.; Gong, X. B.; Li, Y.; Si, Y.; Zhang, S. C.; Yu, J. Y.; Ding, B. Environmentally friendly waterborne polyurethane nanofibrous membranes by emulsion electrospinning for waterproof and breathable textiles. Chem. Eng. J. 2022, 427, 130925.
Shi, S.; Han, Y. T.; Hu, J. L. Robust waterproof and self-adaptive breathable membrane with heat retention property for intelligent protective cloth. Prog. Org. Coat. 2019, 137, 105303.
Li, Q. S.; Ding, C.; Yuan, W.; Xie, R. J.; Zhou, X. M.; Zhao, Y.; Yu, M.; Yang, Z. J.; Sun, J.; Tian, Q. et al. Highly stretchable and permeable conductors based on shrinkable electrospun fiber mats. Adv. Fiber Mater. 2021, 3, 302–311.
Jeong, W.; Park, Y.; Gwon, G.; Song, J.; Yoo, S.; Bae, J.; Ko, Y. H.; Choi, J. H.; Lee, S. All-organic, solution-processed, extremely conformal, mechanically biocompatible, and breathable epidermal electrodes. ACS Appl. Mater. Interfaces 2021, 13, 5660–5667.