AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Metal halide perovskite nanocrystals with enhanced photoluminescence and stability toward anti-counterfeiting high-performance flexible fibers

Ranran Zhou1Chi-An Cheng3Xuyi Wang4Kun Nie1( )Jing Wu1Mengyun Wu1Xiuqiang Duan1Ziyao Hu1Injamam Ul Huq1Hua Wang1Luoxin Wang1( )Lefu Mei2Haikun Liu5Xiaoxue Ma1( )
School of Materials Science and Engineering, Hubei Key Laboratory for New Textile Materials and Applications, Key Laboratory of Polyphenylene Sulfide Fiber and Application in Textile Industry, and State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China
Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China
Department of Bioengineering, University of California Los Angeles, Los Angeles 90095, USA
China Bluestar Chengrand Co., Ltd, High Tech Organic Fiber Key Laboratory of Sichuan Province, Chengdu 610042, China
Department of Energy and Chemical Engineering, Dongguan University of Technology, Dongguan 523808, China
Show Author Information

Graphical Abstract

The cesium lead halide (CsPbI3) nanowires and nanorods are modified by the anion exchange method. The modified nanowires and nanorods still have ideal morphology, and the performance and stability are improved. Moreover, nanorods and aramid/polyphenylene sulfide (ACFs/PPS) compound paper composites can be applied in the field of fluorescent anti-counterfeiting.

Abstract

As a new type of light-collecting and luminescent material, all-inorganic cesium lead halide CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (NCs) are expected to have a wide range of applications in the fields of photovoltaics, optoelectronics, and fluorescence anti-counterfeiting, etc. Therefore, improving the fluorescence performance and stability of CsPbX3 perovskite NCs to prompt their applications would promise both fundamental and practical significance for in-depth research in the field of halide perovskites. In this paper, we developed a modification strategy to introduce a halogen source, zinc bromide (ZnBr2) in hexane, to CsPbX3 perovskite that can be conducted under atmospheric conditions with reduced reaction cost and easier operation. The first work in this paper was to apply the modification strategy to CsPbI3 nanowires (NWs). Compared with the untreated NWs, the ZnBr2/hexane modified CsPbI3 NWs exhibited better fluorescence properties. Subsequently, based on the study of perovskite NWs, we investigated perovskite nanocrystal-CsPbI3 nanorods (NRs) with different morphologies and sizes. It was found that the luminescence properties of nanorods (NRs) were superior. Later, we infiltrated the modified NRs into the aramid/polyphenylene sulfide (ACFs/PPS) composite paper yielded from our previous work to study its fluorescence performance for anti-counterfeiting. Their luminescence properties under ultraviolet light irradiation enable better performance in fluorescence anti-counterfeiting. The ZnBr2/hexane modification strategy and the applications studied in this work will expand the scope of perovskite research, laying the foundation for the applications of fluorescent anti-counterfeiting, nano-photoelectric devices, and fluorescent composite materials.

Electronic Supplementary Material

Download File(s)
12274_2022_5041_MOESM1_ESM.pdf (974.7 KB)

References

[1]

Deng, J. P.; Li, J. L.; Yang, Z.; Wang, M. Q. All-inorganic lead halide perovskites: A promising choice for photovoltaics and detectors. J. Mater. Chem. C 2019, 7, 12415–12440.

[2]

Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80–82.

[3]

Di Stasio, F.; Christodoulou, S.; Huo, N. J.; Konstantatos, G. Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide. Chem. Mater. 2017, 29, 7663–7667.

[4]

Bohn, B. J.; Tong, Y.; Gramlich, M.; Lai, M. L.; Döblinger, M.; Wang, K.; Hoye, R. L. Z.; Müller-Buschbaum, P.; Stranks, S. D.; Urban, A. S. et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett. 2018, 18, 5231–5238.

[5]

Yi, J.; Ge, X. Y.; Liu, E. X.; Cai, T.; Zhao, C. J.; Wen, S. C.; Sanabria, H.; Chen, O.; Rao, A. M.; Gao, J. B. The correlation between phase transition and photoluminescence properties of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals. Nanoscale Adv. 2020, 2, 4390–4394.

[6]

Eperon, G. E.; Paternò, G. M.; Sutton, R. J.; Zampetti, A.; Haghighirad, A. A.; Cacialli, F.; Snaith, H. J. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 2015, 3, 19688–19695.

[7]

Eperon, G. E.; Stranks, S. D.; Menelaou, C.; Johnston, M. B.; Herz, L. M.; Snaith, H. J. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 2014, 7, 982–988.

[8]

Ahmad, W.; Khan, J.; Niu, G. D.; Tang, J. Inorganic CsPbI3 perovskite-based solar cells: A choice for a tandem device. Sol. RRL 2017, 1, 1700048.

[9]
BushK. A.PalmstromA. F.YuZ. J.BoccardM.CheacharoenR.MailoaJ. P.McMeekinD. P.HoyeR. L. Z.BailieC. D.LeijtensT. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stabilityNat. Energy201721700910.1038/nenergy.2017.9

Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2017, 2, 17009.

[10]

Zhao, D. W.; Yu, Y.; Wang, C. L.; Liao, W. Q.; Shrestha, N.; Grice, C. R.; Cimaroli, A. J.; Guan, L.; Ellingson, R. J.; Zhu, K. et al. Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2017, 2, 17018.

[11]

Eperon, G. E.; Leijtens, T.; Bush, K. A.; Prasanna, R.; Green, T.; Wang, J. T. W.; Mcmeekin, D. P.; Volonakis, G.; Milot, R. L.; May, R. et al. Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 2016, 354, 861–865.

[12]

Liu, S. J.; He, M. L.; Di, X. X.; Li, P. Z.; Xiang, W. D.; Liang, X. J. CsPbX3 nanocrystals films coated on YAG: Ce3+ PiG for warm white lighting source. Chem. Eng. J. 2017, 330, 823–830.

[13]

Murtaza, G.; Ahmad, I. First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M=Cl, Br, I). Phys. B:Condens. Matter 2011, 406, 3222–3229.

[14]

Ramasamy, P.; Lim, D. H.; Kim, B.; Lee, S. H.; Lee, M. S.; Lee, J. S. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. 2016, 52, 2067–2070.

[15]

Yantara, N.; Bhaumik, S.; Yan, F.; Sabba, D.; Dewi, H. A.; Mathews, N.; Boix, P. P.; Demir, H. V.; Mhaisalkar, S. Inorganic halide perovskites for efficient light-emitting diodes. J. Phys. Chem. Lett. 2015, 6, 4360–4364.

[16]

Lin, K. B.; Xing, J.; Quan, L. N.; De Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245–248.

[17]

Bao, C. X.; Yang, J.; Bai, S.; Xu, W. D.; Yan, Z. B.; Xu, Q. Y.; Liu, J. M.; Zhang, W. J.; Gao, F. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 2018, 30, 1803422.

[18]

Lou, S. Q.; Si, S. C.; Huang, L.; Gan, W. J.; Lan, B.; Zhang, J. H.; Li, M. R.; Xuan, T. T.; Wang, J. In-situ synthesis of highly stable CsPbBr3/PbBrF composite nanocrystals induced by hydrofluoric acid. Chem. Eng. J. 2022, 430, 132680.

[19]

Seth, S.; Ahmed, T.; De, A.; Samanta, A. Tackling the defects, stability, and photoluminescence of CsPbX3 perovskite nanocrystals. ACS Energy Lett. 2019, 4, 1610–1618.

[20]

Grandhi, G. K.; Mokurala, K.; Han, J. H.; Cho, H. B.; Han, J. Y.; Im, W. B. Recent advances and challenges in obtaining stable CsPbX3 (X = Cl, Br, and I) nanocrystals toward white light-emitting applications. ECS J. Solid State Sci. Technol. 2021, 10, 106001.

[21]

Liu, P. Z.; Chen, W.; Wang, W. G.; Xu, B.; Wu, D.; Hao, J. J.; Cao, W. Y.; Fang, F.; Li, Y.; Zeng, Y. Y. et al. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chem. Mater. 2017, 29, 5168–5173.

[22]

Woo, J. Y.; Kim, Y.; Bae, J.; Kim, T. G.; Kim, J. W.; Lee, D. C.; Jeong, S. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chem. Mater. 2017, 29, 7088–7092.

[23]

Li, F.; Liu, Y.; Wang, H. L.; Zhan, Q.; Liu, Q. L.; Xia, Z. G. Postsynthetic surface trap removal of CsPbX3 (X = Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield. Chem. Mater. 2018, 30, 8546–8554.

[24]

Jia, Y. H.; Wang, H. C.; Yan, Z. R.; Deng, L.; Dong, H.; Ma, N.; Sun, D. B. A facile method for the synthesis of CuInS2-ZnS quantum dots with tunable photoluminescent properties. RSC Adv. 2016, 6, 93303–93308.

[25]

Imran, M.; Caligiuri, V.; Wang, M. J.; Goldoni, L.; Prato, M.; Krahne, R.; De Trizio, L.; Manna, L. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals. J. Am. Chem. Soc. 2018, 140, 2656–2664.

[26]

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

[27]

Zhang, Y.; Lu, D.; Gao, M. Y.; Lai, M. L.; Lin, J.; Lei, T.; Lin, Z. N.; Quan, L. N.; Yang, P. D. Quantitative imaging of anion exchange kinetics in halide perovskites. Proc. Natl. Acad. Sci. USA 2019, 116, 12648–12653.

[28]

Akkerman, Q. A.; D'Innocenzo, V.; Accornero, S.; Scarpellini, A.; Petrozza, A.; Prato, M.; Manna, L. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J. Am. Chem. Soc. 2015, 137, 10276–10281.

[29]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[30]

Guhrenz, C.; Benad, A.; Ziegler, C.; Haubold, D.; Gaponik, N.; Eychmüller, A. Solid-state anion exchange reactions for color tuning of CsPbX3 perovskite nanocrystals. Chem. Mater. 2016, 28, 9033–9040.

[31]

Fang, S. F.; Li, G. S.; Lu, Y. Y.; Li, L. P. Highly luminescent CsPbX3 (X=Cl, Br, I) nanocrystals achieved by a rapid anion exchange at room temperature. Chem. -Eur. J. 2018, 24, 1898–1904.

[32]

Liu, H. W.; Liu, Z. Y.; Xu, W. Z.; Yang, L. T.; Liu, Y.; Yao, D.; Zhang, D. Q.; Zhang, H.; Yang, B. Engineering the photoluminescence of CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals across the full visible spectra with the interval of 1 nm. ACS Appl. Mater. Interfaces 2019, 11, 14256–14265.

[33]

Dou, L. T.; Lai, M. L.; Kley, C. S.; Yang, Y. M.; Bischak, C. G.; Zhang, D. D.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Spatially resolved multicolor CsPbX3 nanowire heterojunctions via anion exchange. Proc. Natl. Acad. Sci. USA 2017, 114, 7216–7221.

[34]

Chen, Y. C.; Chou, H. L.; Lin, J. C.; Lee, Y. C.; Pao, C. W.; Chen, J. L.; Chang, C. C.; Chi, R. Y.; Kuo, T. R.; Lu, C. W. et al. Enhanced luminescence and stability of cesium lead halide perovskite CsPbX3 nanocrystals by Cu2+-assisted anion exchange reactions. J. Phys. Chem. C 2019, 123, 2353–2360.

[35]

Lai, M. L.; Kong, Q.; Bischak, C. G.; Yu, Y.; Dou, L. T.; Eaton, S. W.; Ginsberg, N. S.; Yang, P. D. Structural, optical, and electrical properties of phase-controlled cesium lead iodide nanowires. Nano Res. 2017, 10, 1107–1114.

[36]

Huang, S. Q.; Lin, P. L.; Yao, S. J.; Wu, M. Y.; Zhu, Z. M.; Wang, L. X.; Wang, H. High-performance para-aramid paper strengthened by ultrafine fiber pulp of polyphenylene sulfide. Compos. Sci. Technol. 2021, 216, 109073.

[37]

Chen, G. W.; Mohanty, A. K.; Misra, M. Progress in research and applications of polyphenylene sulfide blends and composites with carbons. Compos. Part B:Eng. 2021, 209, 108553.

[38]

Huang, S. Q.; Lin, P. L.; Huang, H.; Zhao, L.; Zhu, C. Q.; Yu, Y.; Zhu, Z. M.; Nie, K.; Tang, Q. Q.; Wang, L. X. et al. Tailored polyphenylene sulfite composite with desirable mechanical performance and low dielectric constant by constructing a controllable aramid fiber network. Compos. Part B:Eng. 2020, 201, 108334.

[39]

Kumar, P.; Creason, T. D.; Fattal, H.; Sharma, M.; Du, M. H.; Saparov, B. Composition-dependent photoluminescence properties and anti-counterfeiting applications of A2AgX3 (A = Rb, Cs; X = Cl, Br, I). Adv. Funct. Mater. 2021, 31, 2104941.

[40]

Yu, X. Y.; Wu, L. Z.; Yang, D.; Cao, M. H.; Fan, X.; Lin, H. P.; Zhong, Q. X.; Xu, Y.; Zhang, Q. Hydrochromic CsPbBr3 nanocrystals for anti-counterfeiting. Angew. Chem., Int. Ed. 2020, 59, 14527–14532.

[41]

Wei, J. H.; Liao, J. F.; Zhou, L.; Luo, J. B.; Wang, X. D.; Kuang, D. B. Indium-antimony-halide single crystals for high-efficiency white-light emission and anti-counterfeiting. Sci. Adv. 2021, 7, eabg3989.

[42]

Feng, Q.; Xie, Z. G.; Zheng, M. Colour-tunable ultralong-lifetime room temperature phosphorescence with external heavy-atom effect in boron-doped carbon dots. Chem. Eng. J. 2021, 420, 127647.

[43]

Kumar, P.; Dwivedi, J.; Gupta, B. K. Highly luminescent dual mode rare-earth nanorod assisted multi-stage excitable security ink for anti-counterfeiting applications. J. Mater. Chem. C 2014, 2, 10468–10475.

[44]

Wang, Y. M.; Yan, Y. C.; Li, D.; Zhao, W. B.; Chen, S. H.; Zhong, Q. X.; Liu, J.; Diarra, F.; Cao, M. H.; Zhang, Q. Reversible transformation of all-inorganic copper halide perovskite nanocrystals for anti-counterfeiting. Dalton Trans. 2021, 50, 12826–12830.

[45]

Campos-Cuerva, C.; Zieba, M.; Sebastian, V.; Martinez, G.; Sese, J.; Irusta, S.; Contamina, V.; Arruebo, M.; Santamaria, J. Screen-printed nanoparticles as anti-counterfeiting tags. Nanotechnology 2016, 27, 095702.

[46]

Kumar, P.; Nagpal, K.; Gupta, B. K. Unclonable security codes designed from multicolor luminescent lanthanide-doped Y2O3 nanorods for anticounterfeiting. ACS Appl. Mater. Interfaces 2017, 9, 14301–14308.

[47]

Dong, B.; Yuan, Y. J.; Ding, M. Y.; Bai, W. F.; Wu, S. T.; Ji, Z. G. Efficient dual-mode luminescence from lanthanide-doped core-shell nanoarchitecture for anti-counterfeiting applications. Nanotechnology 2020, 31, 365705.

[48]

Zhou, R. R.; Cheng, C. A.; Qiu, S. Y.; Chen, J. Y.; Nie, K.; Wu, M. Y.; Lin, P. L.; Wang, H.; Wang, L. X.; Mei, L. F. A novel and facile synthesis strategy for highly stable cesium lead halide nanowires. RSC Adv. 2021, 11, 28716–28722.

[49]

Hu, Y. Q.; Bai, F.; Liu, X. B.; Ji, Q. M.; Miao, X. L.; Qiu, T.; Zhang, S. F. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett. 2017, 2, 2219–2227.

[50]

Zhang, X.; Li, X. M.; Gao, W. G.; Luo, S. J.; Su, S. D.; Huang, R.; Luo, M. Bimetallic CeZr5-UiO-66 as a highly efficient photocatalyst for the nitrogen reduction reaction. Sustainable Energy Fuels 2021, 5, 4053–4059.

[51]

Bao, X. Y.; Li, M. Z.; Zhao, J.; Xia, Z. G. The postsynthetic anion exchange of CsPbI3 nanocrystals for photoluminescence tuning and enhanced quantum efficiency. J. Mater. Chem. C 2020, 8, 12302–12307.

[52]

Wang, S. X.; Bi, C. H.; Yuan, J. F.; Zhang, L. X.; Tian, J. J. Original core-shell structure of cubic CsPbBr3@amorphous CsPbBrx perovskite quantum dots with a high blue photoluminescence quantum yield of over 80%. ACS Energy Lett. 2018, 3, 245–251.

[53]

Ding, L.; Shen, C. Y.; Zhao, Y.; Chen, Y.; Yuan, L.; Yang, H. S.; Liang, X. J.; Xiang, W. D.; Li, L. CsPbBr3 nanocrystals glass facilitated with Zn ions for photocatalytic hydrogen production via H2O splitting. Mol. Catal. 2020, 483, 110764.

[54]

Nikl, M.; Nitsch, K.; Somma, F.; Fabeni, P.; Pazzi, G. P.; Feng, X. Q. Luminescence of ternary nanoaggregates in CsI-PbI2 thin films. J. Lumin. 2000, 87–89, 372–374.

[55]

Wang, S. Y.; Sun, Q.; Devakumar, B.; Liang, J.; Sun, L. L.; Huang, X. Y. Novel highly efficient and thermally stable Ca2GdTaO6: Eu3+ red-emitting phosphors with high color purity for UV/blue-excited WLEDs. J. Alloys Compd. 2019, 804, 93–99.

[56]

Nie, K.; Ma, X. X.; Lin, P. L.; Kumar, N.; Wang, L. X.; Mei, L. F. Synthesis and luminescence properties of apatite-type red-emitting Ba2La8(GeO4)6O2: Eu3+ phosphors. J. Rare Earth. 2021, 39, 1320–1326.

[57]

Zhou, Y. J.; Pan, A. Z.; Shi, C. Y.; Ma, X. Q.; Jia, M. J.; Huang, H.; Ren, D. Z.; He, L. Superhydrophobic luminous nanocomposites from CsPbX3 perovskite nanocrystals encapsulated in organosilica. Appl. Surf. Sci. 2020, 515, 146004.

Nano Research
Pages 3542-3551
Cite this article:
Zhou R, Cheng C-A, Wang X, et al. Metal halide perovskite nanocrystals with enhanced photoluminescence and stability toward anti-counterfeiting high-performance flexible fibers. Nano Research, 2023, 16(2): 3542-3551. https://doi.org/10.1007/s12274-022-5041-8
Topics:

3209

Views

17

Crossref

16

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 07 July 2022
Revised: 27 August 2022
Accepted: 13 September 2022
Published: 02 October 2022
© Tsinghua University Press 2022
Return