AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

All-atomristor logic gates

Shu Wang1,§Zhican Zhou1,§Fengyou Yang1,§Shengyao Chen1,2Qiaoxuan Zhang3Wenqi Xiong4Yusong Qu1Zhongchang Wang5Cong Wang6( )Qian Liu1,2( )
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute, School of Physics, Nankai University, Tianjin 300457, China
Electrical Automation Department, Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, China
School of Physics and Technology, Wuhan University, Wuhan 430072, China
International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China

§ Shu Wang, Zhican Zhou, and Fengyou Yang contributed equally to this work.

Show Author Information

Graphical Abstract

All-atomristor logic gates are realized for the first time based on high-performance atomristors built by monolayer MoS2 with a moderate defect concentration. Fabricated logical gates possess a strong logic computing ability and demonstrate considerable applicability in combinational logic circuits, crossbar array, and binary neural networks.

Abstract

The atomristor (monolayer two-dimensional (2D)-material memristor) is competitive in high-speed logic computing due to its binary feature, lower energy consumption, faster switch response, and so on. Yet to date, all-atomristor logic gates used for logic computing have not been reported due to the poor consistency of different atomristors in performance. Here, by studying band structures and electron transport properties of MoS2 atomristor, a comprehensive memristive mechanism is obtained. Guided by the simulation results, monolayer MoS2 with moderated defect concentration has been fabricated in the experiment, which can build atomristors with high performance and good consistency. Based on this, for the first time, MoS2 all-atomristor logic gates are realized successfully. As a demonstration, a half-adder based on the logic gates and a binary neural network (BNN) based on crossbar arrays are evaluated, indicating the applicability in various logic computing circumstances. Owing to shorter transition time and lower energy consumption, all-atomristor logic gates will open many new opportunities for next-generation logic computing and data processing.

Electronic Supplementary Material

Download File(s)
12274_2022_5042_MOESM1_ESM.pdf (2 MB)

References

[1]

Shalf, J. The future of computing beyond Moore’s law. Philos. Trans. Roy. Soc. A 2020, 378, 20190061.

[2]

Leiserson, C. E.; Thompson, N. C.; Emer, J. S.; Kuszmaul, B. C.; Lampson, B. W.; Sanchez, D.; Schardl, T. B. There’s plenty of room at the Top: What will drive computer performance after Moore’s law? Science 2020, 368, eaam9744.

[3]

Theis, T. N.; Wong, H. S. P. The end of moore’s law: A new beginning for information technology. Comput. Sci. Eng. 2017, 19, 41–50.

[4]

Sebastian, A.; Le Gallo, M.; Khaddam-Aljameh, R.; Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 2020, 15, 529–544.

[5]

Shi, T.; Wang, R.; Wu, Z. H.; Sun, Y. Z.; An, J. J.; Liu, Q. A review of resistive switching devices: Performance improvement, characterization, and applications. Small Struct. 2021, 2, 2000109.

[6]

Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.

[7]

Gao, L. G.; Alibart, F.; Strukov, D. B. Programmable CMOS/memristor threshold logic. IEEE Trans. Nanotechnol. 2013, 12, 115–119.

[8]

Rose, G. S.; Rajendran, J.; Manem, H.; Karri, R.; Pino, R. E. Leveraging memristive systems in the construction of digital logic circuits. Proc. IEEE 2012, 100, 2033–2049.

[9]

Yang, J. J.; Pickett, M. D.; Li, X. M.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 2008, 3, 429–433.

[10]

Guo, Z. N.; Cao, R.; Wang, H. D.; Zhang, X.; Meng, F. X.; Chen, X.; Gao, S. Y.; Sang, D. K.; Nguyen, T. H.; Duong, A. T. et al. High-performance polarization-sensitive photodetectors on two-dimensional β-InSe. Natl. Sci. Rev. 2022, 9, nwab098.

[11]

Zhang, Y.; Huang, P.; Guo, J.; Shi, R. C.; Huang, W. C.; Shi, Z.; Wu, L. M.; Zhang, F.; Gao, L. F.; Li, C. et al. Graphdiyne-based flexible photodetectors with high responsivity and detectivity. Adv. Mater. 2020, 32, 2001082.

[12]

Jin, J. Y.; Wang, Z. P.; Peng, Z. S.; Liu, H.; Peng, K.; Wei, H. N.; Wang, Y.; Xu, Y. S.; Wei, H.; Chu, W. G. et al. Multifunctional dual gated coupling device using van der Waals ferroelectric heterostructure. Adv. Electron. Mater. 2022, 8, 2200210.

[13]

Gao, L. F.; Ma, C. Y.; Wei, S. R.; Kuklin, A. V.; Zhang, H.; Ågren, H. Applications of few-layer Nb2C MXene: Narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano 2021, 15, 954–965.

[14]

Qiao, H.; Huang, Z. Y.; Ren, X. H.; Liu, S. H.; Zhang, Y. P.; Qi, X.; Zhang, H. Self-powered photodetectors based on 2D materials. Adv. Opt. Mater. 2020, 8, 1900765.

[15]

Fan, T. J.; Xie, Z. J.; Huang, W. C.; Li, Z. J.; Zhang, H. Two-dimensional non-layered selenium nanoflakes: Facile fabrications and applications for self-powered photo-detector. Nanotechnology 2019, 30, 114002.

[16]

Guo, Z. N.; Zeng, Y. H.; Meng, F. X.; Qu, H. Z.; Zhang, S. L.; Hu, S. P.; Fan, S. D.; Zeng, H. B.; Cao, R.; Prasad, P. N. et al. In-situ neutron-transmutation for substitutional doping in 2D layered indium selenide based phototransistor. eLight 2022, 2, 9.

[17]

Ge, R. J.; Wu, X. H.; Liang, L. B.; Hus, S. M.; Gu, Y. Q.; Okogbue, E.; Chou, H.; Shi, J. P.; Zhang, Y. F.; Banerjee, S. K. et al. A library of atomically thin 2D materials featuring the conductive-point resistive switching phenomenon. Adv. Mater. 2021, 33, 2007792.

[18]

Ge, R. J.; Wu, X. H.; Kim, M.; Shi, J. P.; Sonde, S.; Tao, L.; Zhang, Y. F.; Lee, J. C.; Akinwande, D. Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 2018, 18, 434–441.

[19]

Kim, M.; Ducournau, G.; Skrzypczak, S.; Yang, S. J.; Szriftgiser, P.; Wainstein, N.; Stern, K.; Happy, H.; Yalon, E.; Pallecchi, E. et al. Monolayer molybdenum disulfide switches for 6G communication systems. Nat. Electron. 2022, 5, 367–373.

[20]

Zhou, Z. C.; Yang, F. Y.; Wang, S.; Wang, L.; Wang, X. F.; Wang, C.; Xie, Y.; Liu, Q. Emerging of two-dimensional materials in novel memristor. Front. Phys. 2022, 17, 23204.

[21]

Wu, X. H.; Ge, R. J.; Chen, P. A.; Chou, H.; Zhang, Z. P.; Zhang, Y. F.; Banerjee, S.; Chiang, M. H.; Lee, J. C.; Akinwande, D. Thinnest nonvolatile memory based on monolayer h-BN. Adv. Mater. 2019, 31, 1806790.

[22]

Kim, M.; Ge, R. J.; Wu, X. H.; Lan, X.; Tice, J.; Lee, J. C.; Akinwande, D. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 2018, 9, 2524.

[23]
Ge, R. J.; Wu, X. H.; Kim, M.; Chen, P. A.; Shi, J. P.; Choi, J.; Li, X. Q.; Zhang, Y. F.; Chiang, M. H.; Lee, J. C. et al. Atomristors: Memory effect in atomically-thin sheets and record RF switches. In 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2018, pp 22.6.1–22.6.4.
[24]

Hus, S. M.; Ge, R. J.; Chen, P. A.; Liang, L. B.; Donnelly, G. E.; Ko, W.; Huang, F. M.; Chiang, M. H.; Li, A. P.; Akinwande, D. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 2021, 16, 58–62.

[25]
Kvatinsky, S.; Wald, N.; Satat, G.; Kolodny, A.; Weiser, U. C.; Friedman, E. G. MRL—Memristor ratioed logic. In 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications, Turin, Italy, 2012, pp 1–6.
[26]

Lee, M. J.; Lee, S.; Lee, S.; Balamurugan, K.; Yoon, C.; Jang, J. T.; Kim, S. H.; Kwon, D. H.; Kim, M.; Ahn, J. P. et al. Synaptic devices based on two-dimensional layered single-crystal chromium thiophosphate (CrPS4). NPG Asia Mater. 2018, 10, 23–30.

[27]

Li, Y.; Cui, Z. J.; He, Y. W.; Tian, H.; Yang, T. C.; Shou, C. Y.; Liu, J. L. Resistive switching properties of monolayer h-BN atomristors with different electrodes. Appl. Phys. Lett. 2022, 120, 173104.

[28]

Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

[29]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[30]
Nagel, L. W.; Pederson, D. O. SPICE (simulation program with integrated circuit emphasis). 1973.
[31]

Yakopcic, C.; Taha, T.; Subramanyam, G.; Pino, R. Generalized memristive device SPICE model and its application in circuit design. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 2013, 32, 1201–1214.

[32]

Li, C.; Wang, Z. R.; Rao, M. Y.; Belkin, D.; Song, W. H.; Jiang, H.; Yan, P.; Li, Y. N.; Lin, P.; Hu, M. et al. Long short-term memory networks in memristor crossbar arrays. Nat. Mach. Intell. 2019, 1, 49–57.

[33]

Hu, M.; Li, H.; Chen, Y. R.; Wu, Q.; Rose, G. S.; Linderman, R. W. Memristor crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1864–1878.

[34]

Chen, P. Y.; Yu, S. M. Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices 2015, 62, 4022–4028.

[35]

Huang, C. H.; Huang, J. S.; Lin, S. M.; Chang, W. Y.; He, J. H.; Chueh, Y. L. ZnO1−x nanorod arrays/ZnO thin film bilayer structure: From homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 2012, 6, 8407–8414.

[36]
Yu, S. M.; Li, Z. W.; Chen, P. Y.; Wu, H. Q.; Gao, B.; Wang, D. L.; Wu, W.; Qian, H. , Binary neural network with 16 Mb RRAM macro chip for classification and online training. In 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, USA, 2016, pp 16.2. 1–16.2. 4.
[37]

Shi, W. S.; Cao, J.; Zhang, Q.; Li, Y. H. Z.; Xu, L. Y. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646.

[38]

Deng, L. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 2012, 29, 141–142.

[39]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[40]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[41]

Kerber, T.; Sierka, M.; Sauer, J. Application of semiempirical long-range dispersion corrections to periodic systems in density functional theory. J. Comput. Chem. 2008, 29, 2088–2097.

[42]
Atomistix ToolKit version 2018. 06, Synopsys QuantumWise A/S. www. quantumwise. com. (accessed July 10, 2022)
[43]

Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2002, 65, 165401.

[44]

Troullier, N.; Martins, J. A straightforward method for generating soft transferable pseudopotentials. Solid State Commun. 1990, 74, 613–616.

Nano Research
Pages 1688-1694
Cite this article:
Wang S, Zhou Z, Yang F, et al. All-atomristor logic gates. Nano Research, 2023, 16(1): 1688-1694. https://doi.org/10.1007/s12274-022-5042-7
Topics:

1121

Views

7

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 22 July 2022
Revised: 07 September 2022
Accepted: 11 September 2022
Published: 21 October 2022
© Tsinghua University Press 2022
Return