Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Immobilizing enzymes within metal-organic frameworks (MOFs) enables enzymes to against extreme environments. However, these MOF shells are just like armors, protective but heavy, which shield the enzymes from threats while locking them in the cage. The exploitation of immobilization strategy and intrinsic property of MOFs themselves is of great significance. Here, we proposed a functional protein trap strategy for efficient enzyme encapsulation. The ferrocenedicarboxylic acid (Fc) was used to induce the formation of defect-rich Co-based MOFs (CoBDC-Fc). As result, the engineered protein trap can not only improve the enzyme loading but also accelerate catalytic efficiency. Specifically, the atomically dispersed Fc sites serve as cocatalysts/cofactors and even change the conformation of enzymes in the construed microenvironment. Furthermore, the obtained CoBDC-Fc/enzyme exhibits excellent recyclability and tolerance to inhospitable conditions. Benefited by these, the CoBDC-Fc/enzyme/antigen composites were further prepared for cascade enzyme-linked immunosorbent assay of prostate-specific antigen with satisfactory sensitivity.
Chen, K.; Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 2020, 3, 203–213.
Dunn, P. J. The importance of green chemistry in process research and development. Chem. Soc. Rev. 2012, 41, 1452–1461.
Bornscheuer, U. T.; Huisman, G. W.; Kazlauskas, R. J.; Lutz, S.; Moore, J. C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194.
Sheldon, R. A.; Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 2018, 118, 801–838.
Wu, Q.; He, Z. G.; Wang, X.; Zhang, Q.; Wei, Q. C.; Ma, S. Q.; Ma, C.; Li, J. Y.; Wang, Q. G. Cascade enzymes within self-assembled hybrid nanogel mimicked neutrophil lysosomes for singlet oxygen elevated cancer therapy. Nat. Commun. 2019, 10, 240.
Walsh, C. T.; Moore, B. S. Enzymatic cascade reactions in biosynthesis. Angew. Chem., Int. Ed. 2019, 58, 6846–6879.
Schoemaker, H. E.; Mink, D.; Wubbolts, M. G. Dispelling the myths-biocatalysis in industrial synthesis. Science 2003, 299, 1694–1697.
Cui, H. Y.; Eltoukhy, L.; Zhang, L. L.; Markel, U.; Jaeger, K. E.; Davari, M. D.; Schwaneberg, U. Less unfavorable salt bridges on the enzyme surface result in more organic cosolvent resistance. Angew. Chem., Int. Ed. 2021, 60, 11448–11456.
Chapman, R.; Stenzel, M. H. All wrapped up: Stabilization of enzymes within single enzyme nanoparticles. J. Am. Chem. Soc. 2019, 141, 2754–2769.
Wu, F.; Su, L.; Yu, P.; Mao, L. Q. Role of organic solvents in immobilizing fungus laccase on single-walled carbon nanotubes for improved current response in direct bioelectrocatalysis. J. Am. Chem. Soc. 2017, 139, 1565–1574.
Ganonyan, N.; Benmelech, N.; Bar, G.; Gvishi, R.; Avnir, D. Entrapment of enzymes in silica aerogels. Mater. Today 2020, 33, 24–35.
Li, J. J.; Anraku, Y.; Kataoka, K. Self-boosting catalytic nanoreactors integrated with triggerable crosslinking membrane networks for initiation of immunogenic cell death by pyroptosis. Angew. Chem., Int. Ed. 2020, 59, 13526–13530.
Ma, X.; Jannasch, A.; Albrecht, U. R.; Hahn, K.; Miguel-López, A.; Schäffer, E.; Sánchez, S. Enzyme-powered hollow mesoporous Janus Nanomotors. Nano Lett. 2015, 15, 7043–7050.
Hwang, E. T.; Lee, S. Multienzymatic cascade reactions via enzyme complex by immobilization. ACS Catal. 2019, 9, 4402–4425.
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.
Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.
Huang, S. M.; Kou, X. X.; Shen, J.; Chen, G. S.; Ouyang, G. F. “Armor-plating” enzymes with metal-organic frameworks (MOFs). Angew. Chem., Int. Ed. 2020, 59, 8786–8798.
Doonan, C.; Riccò, R.; Liang, K.; Bradshaw, D.; Falcaro, P. Metal-organic frameworks at the biointerface: Synthetic strategies and applications. Acc. Chem. Res. 2017, 50, 1423–1432.
Pan, Y. X.; Li, H.; Farmakes, J.; Xiao, F.; Chen, B. S.; Ma, S. Q.; Yang, Z. Y. How do enzymes orient when trapped on metal-organic framework (MOF) surfaces? J. Am. Chem. Soc. 2018, 140, 16032–16036.
Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. GOx@ZIF-8 (NiPd) nanoflower: An artificial enzyme system for tandem catalysis. Angew. Chem., Int. Ed. 2017, 56, 16082–16085.
Feng, D. W.; Liu, T. F.; Su, J.; Bosch, M.; Wei, Z. W.; Wan, W.; Yuan, D. Q.; Chen, Y. P.; Wang, X.; Wang, K. C. et al. Stable metal-organic frameworks containing single-molecule traps for enzyme encapsulation. Nat. Commun. 2015, 6, 5979.
Liang, W. B.; Wied, P.; Carraro, F.; Sumby, C. J.; Nidetzky, B.; Tsung, C. K.; Falcaro, P.; Doonan, C. J. Metal-organic framework-based enzyme biocomposites. Chem. Rev. 2021, 121, 1077–1129.
Chen, Y. J.; Jiménez-Ángeles, F.; Qiao, B. F.; Krzyaniak, M. D.; Sha, F. R.; Kato, S.; Gong, X. Y.; Buru, C. T.; Chen, Z. J.; Zhang, X. et al. Insights into the enhanced catalytic activity of cytochrome c when encapsulated in a metal-organic framework. J. Am. Chem. Soc. 2020, 142, 18576–18582.
Wang, X. L.; Lan, P. C.; Ma, S. Q. Metal–organic frameworks for enzyme immobilization: Beyond host matrix materials. ACS Cent. Sci. 2020, 6, 1497–1506.
Liang, S.; Wu, X. L.; Xiong, J.; Zong, M. H.; Lou, W. Y. Metal-organic frameworks as novel matrices for efficient enzyme immobilization: An update review. Coord. Chem. Rev. 2020, 406, 213149.
Wu, X. L.; Yue, H.; Zhang, Y. Y.; Gao, X. Y.; Li, X. Y.; Wang, L. C.; Cao, Y. F.; Hou, M.; An, H. X.; Zhang, L. et al. Packaging and delivering enzymes by amorphous metal-organic frameworks. Nat. Commun. 2019, 10, 5165.
Liang, W. B.; Xu, H. S.; Carraro, F.; Maddigan, N. K.; Li, Q. W.; Bell, S. G.; Huang, D. M.; Tarzia, A.; Solomon, M. B.; Amenitsch, H. et al. Enhanced activity of enzymes encapsulated in hydrophilic metal-organic frameworks. J. Am. Chem. Soc. 2019, 141, 2348–2355.
Hu, Y. L.; Dai, L. M.; Liu, D. H.; Du, W. Rationally designing hydrophobic UiO-66 support for the enhanced enzymatic performance of immobilized lipase. Green Chem. 2018, 20, 4500–4506.
Xu, W. Q.; Jiao, L.; Wu, Y.; Hu, L. Y.; Gu, W. L.; Zhu, C. Z. Metal-organic frameworks enhance biomimetic cascade catalysis for biosensing. Adv. Mater. 2021, 33, 2005172.
Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.
Shieh, F. K.; Wang, S. C.; Yen, C. I.; Wu, C. C.; Dutta, S.; Chou, L. Y.; Morabito, J. V.; Hu, P.; Hsu, M. H.; Wu, K. C. W. et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: Size-selective sheltering of catalase in metal-organic framework microcrystals. J. Am. Chem. Soc. 2015, 137, 4276–4279.
Hu, M.; Ju, Y.; Liang, K.; Suma, T.; Cui, J. W.; Caruso, F. Void engineering in metal-organic frameworks via synergistic etching and surface functionalization. Adv. Funct. Mater. 2016, 26, 5827–5834.
Vázquez-González, M.; Wang, C.; Willner, I. Biocatalytic cascades operating on macromolecular scaffolds and in confined environments. Nat. Catal. 2020, 3, 256–273.
Li, P.; Moon, S. Y.; Guelta, M. A.; Lin, L.; Gómez-Gualdrón, D. A.; Snurr, R. Q.; Harvey, S. P.; Hupp, J. T.; Farha, O. K. Nanosizing a metal-organic framework enzyme carrier for accelerating nerve agent hydrolysis. ACS Nano 2016, 10, 9174–9182.
Tranchemontagne, D. J.; Mendoza-Cortés, J. L.; O’Keeffe, M.; Yaghi, O. M. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1257–1283.
Wu, X. L.; Ge, J.; Yang, C.; Hou, M.; Liu, Z. Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment. Chem. Commun. 2015, 51, 13408–13411.
Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L. J.; Larsen, R. W.; Ma, S. Q. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. J. Am. Chem. Soc. 2012, 134, 13188–13191.
Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Benahmed, L.; Bourdreux, F.; Zhang, Q.; Serre, C.; Mahy, J. P.; Steunou, N. Enzyme encapsulation in mesoporous metal-organic frameworks for selective biodegradation of harmful dye molecules. Angew. Chem., Int. Ed. 2018, 57, 16141–16146.
Li, Y. M.; Yuan, J.; Ren, H.; Ji, C. Y.; Tao, Y.; Wu, Y. H.; Chou, L. Y.; Zhang, Y. B.; Cheng, L. Fine-tuning the micro-environment to optimize the catalytic activity of enzymes immobilized in multivariate metal-organic frameworks. J. Am. Chem. Soc. 2021, 143, 15378–15390.
Liang, J. Y.; Gao, S.; Liu, J.; Zulkifli, M. Y. B.; Xu, J. T.; Scott, J.; Chen, V.; Shi, J. F.; Rawal, A.; Liang, K. Hierarchically porous biocatalytic MOF microreactor as a versatile platform towards enhanced multienzyme and cofactor-dependent biocatalysis. Angew. Chem., Int. Ed. 2021, 60, 5421–5428.
Lu, S. Z.; Wang, X. Q.; Lu, Q.; Hu, X.; Uppal, N.; Omenetto, F. G.; Kaplan, D. L. Stabilization of enzymes in silk films. Biomacromolecules 2009, 10, 1032–1042.
Zhang, H. R.; Luo, J. Q.; Li, S. S.; Wei, Y. P.; Wan, Y. H. Biocatalytic membrane based on polydopamine coating: A platform for studying immobilization mechanisms. Langmuir 2018, 34, 2585–2594.
Zhong, D. P.; Zewail, A. H. Femtosecond dynamics of flavoproteins: Charge separation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme. Proc. Natl. Acad. Sci. USA 2001, 98, 11867–11872.
Liberman, I.; Shimoni, R.; Ifraemov, R.; Rozenberg, I.; Singh, C.; Hod, I. Active-site modulation in an Fe-porphyrin-based metal-organic framework through ligand axial coordination: Accelerating electrocatalysis and charge-transport kinetics. J. Am. Chem. Soc. 2020, 142, 1933–1940.
Piperberg, G.; Wilner, O. I.; Yehezkeli, O.; Tel-Vered, R.; Willner, I. Control of bioelectrocatalytic transformations on DNA scaffolds. J. Am. Chem. Soc. 2009, 131, 8724–8725.
Xu, W. Q.; Kang, Y. K.; Jiao, L.; Wu, Y.; Yan, H. Y.; Li, J. L.; Gu, W. L.; Song, W. Y.; Zhu, C. Z. Tuning atomically dispersed Fe sites in metal-organic frameworks boosts peroxidase-like activity for sensitive biosensing. Nano-Micro Lett. 2020, 12, 184.
Tang, Z. P.; Li, X. Y.; Tong, L. J.; Yang, H. S.; Wu, J. Y.; Zhang, X. L.; Song, T.; Huang, S. M.; Zhu, F.; Chen, G. S. et al. A biocatalytic cascade in an ultrastable mesoporous hydrogen-bonded organic framework for point-of-care biosensing. Angew. Chem., Int. Ed. 2021, 60, 23608–23613.
Xu, W. Q.; Jiao, L.; Yan, H. Y.; Wu, Y.; Chen, L. J.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Glucose oxidase-integrated metal-organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl. Mater. Interfaces 2019, 11, 22096–22101.
Haga, Y.; Uemura, M.; Baba, S.; Inamura, K.; Takeuchi, K.; Nonomura, N.; Ueda, K. Identification of multisialylated LacdiNAc structures as highly prostate cancer specific glycan signatures on PSA. Anal. Chem. 2019, 91, 2247–2254.