AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Highly insulating phase of Bi2O2Se thin films with high electronic performance

Tao Wang1,2,§Zhuokai Xu2,§Ziye Zhu3,§Mengqi Wu3Zhefeng Lou2Jialu Wang2Wanghua Hu1,2Xiaohui Yang2Tulai Sun4Xiaorui Zheng3Wenbin Li3( )Xiao Lin2( )
Department of Physics, Fudan University, Shanghai 200433, China
Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou 310024, China
Key Laboratory of 3D Micro/nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
Center for Electron Microscopy, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

§ Tao Wang, Zhuokai Xu, and Ziye Zhu contributed equally to this work.

Show Author Information

Graphical Abstract

Through a refined chemical vapor deposition (CVD) method, we synthesized highly insulating Bi2O2Se thin films with resistance up to 1 TΩ. The field-effect transistor (FET) threshold voltage becomes positive, which paves the way for exploring low-power transistors and nonvolatile devices with build-in polarization.

Abstract

Bi2O2Se is highly competitive as a candidate of next-generation high-performance semiconductors. Though dubbed as semiconductor, Bi2O2Se films exhibited high conductance, i.e., metallic behavior, due to spontaneously ionized defects. Semiconducting/insulating films are of practical importance in broad applications based on low-power, high-performance electronics, the existence of which lacks firm evidence. Here, we synthesized highly insulating films in a controlled way, which exhibit semiconducting behavior with channel resistance up to 1 TΩ. The electron chemical potential lies within the band gap, in some cases, even below the charge neutrality level, signifying the trace of hole-type semiconducting. The performance of insulating devices remains high, comparable to high-quality devices previously. Especially, the threshold voltage (Vth) is positive, contrary to common negative values reported. Calculations indicate that our synthesis conditions suppress electron donors (Se vacancies (VSe)) and promote the formation of compensating acceptors (Bi vacancies (VBi)), leading to insulating behaviors. Our work offers insights into electron dynamics of Bi2O2Se, moves one step further towards p-type transistors and provides a valuable playground for engineering ferroelectricity in high-performance semiconductors.

Electronic Supplementary Material

Download File(s)
12274_2022_5046_MOESM1_ESM.pdf (3.7 MB)
12274_2022_5046_MOESM2_ESM.pdf (3.8 MB)

References

[1]

Wu, J. X.; Yuan, H. T.; Meng, M. M.; Chen, C.; Sun, Y.; Chen, Z. Y.; Dang, W. H.; Tan, C. W.; Liu, Y. J.; Yin, J. B. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 2017, 12, 530–534.

[2]

Khan, U.; Luo, Y. T.; Tang, L.; Teng, C. J.; Liu, J. M.; Liu, B. L.; Cheng, H. M. Controlled vapor–solid deposition of millimeter-size single crystal 2D Bi2O2Se for high-performance phototransistors. Adv. Funct. Mater. 2019, 29, 1807979.

[3]

Tong, T.; Chen, Y. F.; Qin, S. C.; Li, W. S.; Zhang, J. R.; Zhu, C. H.; Zhang, C. C.; Yuan, X.; Chen, X. Q.; Nie, Z. H. et al. Sensitive and ultrabroadband phototransistor based on two-dimensional Bi2O2Se nanosheets. Adv. Funct. Mater. 2019, 29, 1905806.

[4]

Fu, Q. D.; Zhu, C.; Zhao, X. X.; Wang, X. L.; Chaturvedi, A.; Zhu, C.; Wang, X. W.; Zeng, Q. S.; Zhou, J. D.; Liu, F. C. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 2019, 31, 1804945.

[5]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[6]

Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496.

[7]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[8]

Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.

[9]

Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

[10]

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

[11]

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS nano 2014, 8, 4033–4041.

[12]

Wu, J. X.; Qiu, C. G.; Fu, H. X.; Chen, S. L.; Zhang, C. C.; Dou, Z. P.; Tan, C. W.; Tu, T.; Li, T. R.; Zhang, Y. C. et al. Low residual carrier concentration and high mobility in 2D semiconducting Bi2O2Se. Nano Lett. 2019, 19, 197–202.

[13]

Li, J.; Wang, Z. X.; Wen, Y.; Chu, J. W.; Yin, L.; Cheng, R. Q.; Lei, L.; He, P.; Jiang, C.; Feng, L. P. et al. High-performance near-infrared photodetector based on ultrathin Bi2O2Se nanosheets. Adv. Funct. Mater. 2018, 28, 1706437.

[14]

Liu, S. Y.; Tan, C. W.; He, D. W.; Wang, Y. S.; Peng, H. L.; Zhao, H. Optical properties and photocarrier dynamics of Bi2O2Se monolayer and nanoplates. Adv. Opt. Mater. 2020, 8, 1901567.

[15]

Yang, H.; Tan, C. W.; Deng, C. Y.; Zhang, R. Y.; Zheng, X. M.; Zhang, X. Z.; Hu, Y. Z.; Guo, X. X.; Wang, G.; Jiang, T. et al. Bolometric effect in Bi2O2Se photodetectors. Small 2019, 15, 1904482.

[16]

Chen, Y. F.; Ma, W. L.; Tan, C. W.; Luo, M.; Zhou, W.; Yao, N. J.; Wang, H.; Zhang, L. L.; Xu, T. F.; Tong, T. et al. Broadband Bi2O2Se photodetectors from infrared to terahertz. Adv. Funct. Mater. 2021, 31, 2009554.

[17]

Zhang, Z. Y.; Li, T. R.; Wu, Y. J.; Jia, Y. J.; Tan, C. W.; Xu, X. T.; Wang, G. R.; Lv, J.; Zhang, W.; He, Y. H. et al. Truly concomitant and independently expressed short- and long-term plasticity in a Bi2O2Se-based three-terminal memristor. Adv. Mater. 2019, 31, 1805769.

[18]

Xu, S. P.; Fu, H. X.; Tian, Y.; Deng, T.; Cai, J.; Wu, J. X.; Tu, T.; Li, T. R.; Tan, C. W.; Liang, Y. et al. Exploiting two-dimensional Bi2O2Se for trace oxygen detection. Angew. Chem. 2020, 132, 18094–18099.

[19]

Xie, H. H.; Liu, M. Q.; You, B. H.; Luo, G. H.; Chen, Y.; Liu, B. L.; Jiang, Z. Y.; Chu, P. K.; Shao, J. D.; Yu, X. F. Biodegradable Bi2O2Se quantum dots for photoacoustic imaging-guided cancer photothermal therapy. Small 2020, 16, 1905208.

[20]

Ruleova, P.; Drasar, C.; Lostak, P.; Li, C. P.; Ballikaya, S.; Uher, C. Thermoelectric properties of Bi2O2Se. Mater. Chem. Phys. 2010, 119, 299–302.

[21]

Pan, L.; Liu, W. D.; Zhang, J. Y.; Shi, X. L.; Gao, H.; Liu, Q. F.; Shen, X. D.; Lu, C. H.; Wang, Y. F.; Chen, Z. G. Synergistic effect approaching record-high figure of merit in the shear exfoliated n-type Bi2O2−2xTe2xSe. Nano Energy 2020, 69, 104394.

[22]

Wang, J. L.; Hu, W. H.; Lou, Z. F.; Xu, Z. K.; Yang, X. H.; Wang, T.; Lin, X. Thermoelectric properties of Bi2O2Se single crystals. Appl. Phys. Lett. 2021, 119, 081901.

[23]

Wu, M. H.; Zeng, X. C. Bismuth oxychalcogenides: A new class of ferroelectric/ferroelastic materials with ultra high mobility. Nano Lett. 2017, 17, 6309–6314.

[24]

Ghosh, T.; Samanta, M.; Vasdev, A.; Dolui, K.; Ghatak, J.; Das, T.; Sheet, G.; Biswas, K. Ultrathin free-standing nanosheets of Bi2O2Se: Room temperature ferroelectricity in self-assembled charged layered heterostructure. Nano Lett. 2019, 19, 5703–5709.

[25]

Zhu, Z. Y.; Yao, X. P.; Zhao, S.; Lin, X.; Li, W. B. Giant modulation of the electron mobility in semiconductor Bi2O2Se via incipient ferroelectric phase transition. J. Am. Chem. Soc. 2022, 144, 4541–4549.

[26]

Vrushabendrakumar, D.; Rajashekhar, H.; Riddell, S.; Kalra, A. P.; Alam, K. M.; Shankar, K. Synthesis, characterization, and visible light photocatalytic activity of solution-processed free-standing 2D Bi2O2Se nanosheets. Nanotechnology 2021, 32, 485602.

[27]

Tian, X. L.; Luo, H. Y.; Wei, R. F.; Zhu, C. H.; Guo, Q. Y.; Yang, D. D.; Wang, F. Q.; Li, J. F.; Qiu, J. R. An ultrabroadband Mid-infrared pulsed optical switch employing solution-processed bismuth oxyselenide. Adv. Mater. 2018, 30, 1801021.

[28]

Xu, R.; Wang, S.; Li, Y.; Chen, H. N.; Tong, T.; Cai, Y.; Meng, Y. F.; Zhang, Z. X.; Wang, X. F.; Wang, F. Q. Layered semiconductor Bi2O2Se for broadband pulse generation in the near-infrared. IEEE Photonics Technol. Lett. 2019, 31, 1056–1059.

[29]

Li, T. R.; Tu, T.; Sun, Y. W.; Fu, H. X.; Yu, J.; Xing, L.; Wang, Z. A.; Wang, H. M.; Jia, R. D.; Wu, J. X. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 2020, 3, 473–478.

[30]

Tu, T.; Zhang, Y. C.; Li, T. R.; Yu, J.; Liu, L. M.; Wu, J. X.; Tan, C. W.; Tang, J. L.; Liang, Y.; Zhang, C. C. et al. Uniform high-κ amorphous native oxide synthesized by oxygen plasma for top-gated transistors. Nano Lett. 2020, 20, 7469–7475.

[31]

Yang, J.; Quhe, R.; Li, Q. H.; Liu, S. Q.; Xu, L. Q.; Pan, Y. Y.; Zhang, H.; Zhang, X. Y.; Li, J. Z.; Yan, J. H. et al. Sub 10 nm bilayer Bi2O2Se transistors. Adv. Electron. Mater. 2019, 5, 1800720.

[32]

Tan, C. W.; Jiang, J. F.; Wang, J. Y.; Yu, M. S.; Tu, T.; Gao, X. Y.; Tang, J. C.; Zhang, C. C.; Zhang, Y. C.; Zhou, X. H. et al. Strain-free layered semiconductors for 2D transistors with on-state current density exceeding 1.3 mA·μm−1. Nano Lett 2022, 22, 3770–3776.

[33]

Gonzalez, R.; Gordon, B. M.; Horowitz, M. A. Supply and threshold voltage scaling for low power CMOS. IEEE J. Solid-State Circ. 1997, 32, 1210–1216.

[34]

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

[35]

Fu, H. X.; Wu, J. X.; Peng, H. L.; Yan, B. H. Self-modulation doping effect in the high-mobility layered semiconductor Bi2O2Se. Phys. Rev. B 2018, 97, 241203(R).

[36]

Xu, Z. K.; Wang, J. L.; Wang, T.; Hu, W. H.; Yang, X. H.; Lin, X. Huge permittivity and premature metallicity in Bi2O2Se single crystals. Sci. China Phys. Mech. Astron. 2021, 64, 267312.

[37]

Wang, J. L.; Wu, J.; Wang, T.; Xu, Z. K.; Wu, J. F.; Hu, W. H.; Ren, Z.; Liu, S.; Behnia, K.; Lin, X. T-square resistivity without umklapp scattering in dilute metallic Bi2O2Se. Nat. Commun. 2020, 11, 3846.

[38]
Mott, N. F. Metal-Insulator Transitions; Taylor and Francis: London, 1990.
[39]

Lin, X.; Zhu, Z. W.; Fauqué, B.; Behnia, K. Fermi surface of the most dilute superconductor. Phys. Rev. X 2013, 3, 021002.

[40]

Collignon, C.; Lin, X.; Rischau, C. W.; Fauqué, B.; Behnia, K. Metallicity and superconductivity in doped strontium titanate. Annu. Rev. Condens. Matter Phys. 2019, 10, 25–44.

[41]

Chen, C.; Wang, M. X.; Wu, J. X.; Fu, H. X.; Yang, H. F.; Tian, Z.; Tu, T.; Peng, H.; Sun, Y.; Xu, X. et al. Electronic structures and unusually robust bandgap in an ultrahigh-mobility layered oxide semiconductor, Bi2O2Se. Sci. Adv. 2018, 4, eaat8355.

[42]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[43]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[44]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[45]

Kang, M.; Chai, H. J.; Jeong, H. B.; Park, C.; Jung, I. Y.; Park, E.; Çiçek, M. M.; Lee, I.; Bae, B. S.; Durgun, E. et al. Low-temperature and high-quality growth of Bi2O2Se layered semiconductors via cracking metal–organic chemical vapor deposition. ACS Nano 2021, 15, 8715–8723.

[46]

Song, Y. K.; Li, Z. J.; Li, H.; Tang, S. J.; Mu, G.; Xu, L. X.; Peng, W.; Shen, D. W.; Chen, Y. L.; Xie, X. M. et al. Epitaxial growth and characterization of high quality Bi2O2Se thin films on SrTiO3 substrates by pulsed laser deposition. Nanotechnology 2020, 31, 165704.

[47]

Liang, Y.; Chen, Y. J.; Sun, Y. W.; Xu, S. P.; Wu, J. X.; Tan, C. W.; Xu, X. F.; Yuan, H. T.; Yang, L. X.; Chen, Y. L. et al. Molecular beam epitaxy and electronic structure of atomically thin oxyselenide films. Adv. Mater. 2019, 31, 1901964.

[48]

Li, H. L.; Xu, X. T.; Zhang, Y.; Gillen, R.; Shi, L. P.; Robertson, J. Native point defects of semiconducting layered Bi2O2Se. Sci. Rep. 2018, 8, 10920.

[49]

Cheng, T.; Tan, C. W.; Zhang, S. Q.; Tu, T.; Peng, H. L.; Liu, Z. R. Raman spectra and strain effects in bismuth oxychalcogenides. J. Phys. Chem. C 2018, 122, 19970–19980.

[50]

Pereira, A. L. J.; Santamaría-Pérez, D.; Ruiz-Fuertes, J.; Manjón, F. J.; Cuenca-Gotor, V. P.; Vilaplana, R.; Gomis, O.; Popescu, C.; Muñoz, A.; Rodríguez-Hernández, P. et al. Experimental and theoretical study of Bi2O2Se under compression. J. Phys. Chem. C 2018, 122, 8853–8867.

[51]

Yang, F.; Wu, J.; Suwardi, A.; Zhao, Y. S.; Liang, B. Y.; Jiang, J.; Xu, J. W.; Chi, D. Z.; Hippalgaonkar, K.; Lu, J. P. et al. Gate-tunable polar optical phonon to piezoelectric scattering in few-layer Bi2O2Se for high-performance thermoelectrics. Adv. Mater. 2021, 33, 2004786.

[52]

Yang, X.; Zhang, Q.; Song, Y. C.; Fan, Y. S.; He, Y. W.; Zhu, Z. H.; Bai, Z. Q.; Luo, Q.; Wang, G.; Peng, G. et al. High mobility two-dimensional bismuth oxyselenide single crystals with large grain size grown by reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces 2021, 13, 49153–49162.

[53]

Wu, J. X.; Tan, C. W.; Tan, Z. J.; Liu, Y. J.; Yin, J. B.; Dang, W. H.; Wang, M. Z.; Peng, H. L. Controlled synthesis of high-mobility atomically thin bismuth oxyselenide crystals. Nano Lett. 2017, 17, 3021–3026.

[54]

Hong, C. Y.; Tao, Y.; Nie, A. M.; Zhang, M. H.; Wang, N.; Li, R. P.; Huang, J. Q.; Huang, Y.; Ren, X. M.; Cheng, Y. C. et al. Inclined ultrathin Bi2O2Se films: A building block for functional van der Waals heterostructures. ACS Nano 2020, 14, 16803–16812.

[55]

Luo, P.; Wang, F. K.; Qu, J. Y.; Liu, K. L.; Hu, X. Z.; Liu, K. W.; Zhai, T. Y. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light on/off ratio and fast response. Adv. Funct. Mater. 2021, 31, 2008351.

[56]

Zhang, C. C.; Wu, J. X.; Sun, Y. W.; Tan, C. W.; Li, T. R.; Tu, T.; Zhang, Y. C.; Liang, Y.; Zhou, X. H.; Gao, P. et al. High-mobility flexible oxyselenide thin-film transistors prepared by a solution-assisted method. J. Am. Chem. Soc. 2020, 142, 2726–2731.

[57]

Meng, M. M.; Huang, S. Y.; Tan, C. W.; Wu, J. X.; Li, X. B.; Peng, H. L.; Xu, H. Q. Universal conductance fluctuations and phase-coherent transport in a semiconductor Bi2O2Se nanoplate with strong spin–orbit interaction. Nanoscale 2019, 11, 10622–10628.

[58]

Yang, H.; Chen, W.; Zheng, X. M.; Yang, D. S.; Hu, Y. Z.; Zhang, X. Z.; Ye, X.; Zhang, Y.; Jiang, T.; Peng, G. et al. Near-infrared photoelectric properties of multilayer Bi2O2Se nanofilms. Nanoscale Res. Lett. 2019, 14, 371.

[59]

Yin, J. B.; Tan, Z. J.; Hong, H.; Wu, J. X.; Yuan, H. T.; Liu, Y. J.; Chen, C.; Tan, C. W.; Yao, F. R.; Li, T. R. et al. Ultrafast and highly sensitive infrared photodetectors based on two-dimensional oxyselenide crystals. Nat. Commun. 2018, 9, 3311.

[60]

Zhang, S. B.; Wei, S. H.; Zunger, A.; Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 1998, 57, 9642–9656.

[61]

Wei, Q. L.; Lin, C. Q.; Li, Y. F.; Zhang, X. Y.; Zhang, Q. Y.; Shen, Q.; Cheng, Y. C.; Huang, W. Physics of intrinsic point defects in bismuth oxychalcogenides: A first-principles investigation. J. Appl. Phys. 2018, 124, 055701.

Nano Research
Pages 3224-3230
Cite this article:
Wang T, Xu Z, Zhu Z, et al. Highly insulating phase of Bi2O2Se thin films with high electronic performance. Nano Research, 2023, 16(2): 3224-3230. https://doi.org/10.1007/s12274-022-5046-3
Topics:

641

Views

5

Crossref

3

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 28 July 2022
Revised: 05 September 2022
Accepted: 11 September 2022
Published: 12 October 2022
© Tsinghua University Press 2022
Return