AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Deep tumor-penetrating nano-delivery strategy to improve diagnosis and therapy in patient-derived xenograft (PDX) oral cancer model and patient tissue

Longmeng Li1,2Aaron R. Lindstrom2Andrew C. Birkeland3Menghuan Tang2Tzu-Yin Lin4Yikai Zhou1( )Bai Xiang2,5( )Xiangdong Xue2,6( )Yuanpei Li2( )
State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, 2700 Stockton Blvd, Sacramento, California 95817, USA
Department of Otolaryngology-Head and Neck Surgery, University of California Davis, 2521 Stockton Blvd, Sacramento, California 95817, USA
Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, University of California Davis, 2700 Stockton Blvd, Sacramento, California 95817, USA
Key Laboratory of Hebei Province for Innovative drug research and evaluation, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
School of Pharmacy, Pharm-X Center, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

PhD@P2A2 exhibited desirable size/charge transformation ability. iRGD combination strategy enhanced PhD@P2A2 accumulation and penetration into the patient-derived xenograft (PDX) tumor. PhD@P2A2 with the co-administration of iRGD rapidly eliminated the primary tumor and inhibited the growth of distant tumor.

Abstract

Nanoprodrugs that are directly assembled by prodrugs attract considerable attention with high anticancer potentials. However, their stability and efficiency of tumor-targeted delivery remain a major challenge in practical biomedical applications. Here, we report a new deep tumor-penetrating nano-delivery strategy to achieve enhanced anti-cancer performance by systematic optimization of a porphyrin-doxorubicin-based nanoprodrug using various PEGylations/crosslinks and co-administration of targeting peptide iRGD. Polyethylene glycols (PEGs) with different molecular weights and grafts are employed to crosslink the nanoprodrug and optimize size, charge, tumor accumulation and penetration, and anti-cancer efficiency, etc. The tumor penetration was validated in syngeneic oral cancer mouse models, patient-derived xenograft (PDX) models, and oral cancer tissue from patients. The optimized nanoprodrug co-administrated with iRGD remarkably enhances the accumulation and penetration both in tumor vascular and PDX tumor tissue. It is effective and safe to improve in vivo therapeutic efficacy via the passive tumor targeting dependent and independent mode. Our tumor-penetrating nano-delivery strategy is promising to strengthen the nanoprodrugs in clinical implementation.

Electronic Supplementary Material

Download File(s)
12274_2022_5047_MOESM1_ESM.pdf (2.9 MB)

References

[1]

Hogan, G.; Tangney, M. The who, what, and why of drug discovery and development. Trends Pharmacol. Sci. 2018, 39, 848–852.

[2]

Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726.

[3]

Jana, D.; Zhao, Y. L. Strategies for enhancing cancer chemodynamic therapy performance. Exploration 2022, 2, 20210238.

[4]

Yuan, Y.; Bo, R.; Jing, D.; Ma, Z.; Wang, Z. L.; Lin, T. Y.; Dong, L. J.; Xue, X. D.; Li, Y. P. Excipient-free porphyrin/SN-38 based nanotheranostics for drug delivery and cell imaging. Nano Res. 2020, 13, 503–510.

[5]

Xue, X. D.; Huang, Y.; Wang, X. S.; Wang, Z. L.; Carney, R. P.; Li, X. C.; Yuan, Y.; He, Y. X.; Lin, T. Y.; Li, Y. P. Self-indicating, fully active pharmaceutical ingredients nanoparticles (FAPIN) for multimodal imaging guided trimodality cancer therapy. Biomaterials 2018, 161, 203–215.

[6]

Xue, X. D.; Jin, S. B.; Zhang, C. Q.; Yang, K. N.; Huo, S. D.; Chen, F.; Zou, G. Z.; Liang, X. J. Probe-inspired nano-prodrug with dual-color fluorogenic property reveals spatiotemporal drug release in living cells. ACS Nano 2015, 9, 2729–2739.

[7]

Buckton, G.; Beezer, A. E. The relationship between particle size and solubility. Int. J. Pharm. 1992, 82, R7–R10.

[8]

Jinno, J. I.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi, M.; Toguchi, H.; Liversidge, G. G.; Higaki, K.; Kimura, T. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release 2006, 111, 56–64.

[9]

Juenemann, D.; Jantratid, E.; Wagner, C.; Reppas, C.; Vertzoni, M.; Dressman, J. B. Biorelevant in vitro dissolution testing of products containing micronized or nanosized fenofibrate with a view to predicting plasma profiles. Eur. J. Pharm. Biopharm. 2011, 77, 257–264.

[10]

Junghanns, J. U. A. H.; Müller, R. H. Nanocrystal technology, drug delivery, and clinical applications. Int. J. Nanomedicine 2008, 3, 295–309.

[11]

Liversidge, G. G.; Conzentino, P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int. J. Pharm. 1995, 125, 309–313.

[12]

Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79.

[13]

Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Grodzinski, P.; Blakey, D. C. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013, 73, 2412–2417.

[14]

Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135.

[15]

Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

[16]

Lammers, T.; Kiessling, F.; Hennink, W. E.; Storm, G. Drug targeting to tumors: Principles, pitfalls, and (pre-) clinical progress. J. Control. Release 2012, 161, 175–187.

[17]

Sindhwani, S.; Syed, A. M.; Ngai, J.; Kingston, B. R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y. W.; Rajesh, N. U.; Hoang, T. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19, 566–575.

[18]

Agarwal, R.; Singh, V.; Jurney, P.; Shi, L.; Sreenivasan, S. V.; Roy, K. Mammalian cells preferentially internalize hydrogel nanodiscs over nanorods and use shape-specific uptake mechanisms. Proc. Natl. Acad. Sci. USA 2013, 110, 17247–17252.

[19]

Mitchell, M. J.; Billingsley, M. M.; Haley, R. M.; Wechsler, M. E.; Peppas, N. A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124.

[20]

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

[21]

Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

[22]

Adams, M. L.; Lavasanifar, A.; Kwon, G. S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355.

[23]

Harris, J. M.; Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221.

[24]

Gref, R.; Lück, M.; Quellec, P.; Marchand, M.; Dellacherie, E.; Harnisch, S.; Blunk, T.; Müller, R. H. ‘Stealth’ corona–core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids. Surf. B: Biointerfaces 2000, 18, 301–313.

[25]

Miteva, M.; Kirkbride, K. C.; Kilchrist, K. V.; Werfel, T. A.; Li, H. M.; Nelson, C. E.; Gupta, M. K.; Giorgio, T. D.; Duvall, C. L. Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials 2015, 38, 97–107.

[26]

Mori, A.; Klibanov, A. L.; Torchilin, V. P.; Huang, L. Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett. 1991, 284, 263–266.

[27]

Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1615–1626.

[28]

Chariou, P. L.; Ortega-Rivera, O. A.; Steinmetz, N. F. Nanocarriers for the delivery of medical, veterinary, and agricultural active ingredients. ACS Nano 2020, 14, 2678–2701.

[29]

Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.

[30]

Guan, J. B.; Guo, H.; Tang, T.; Wang, Y. H.; Wei, Y. S.; Seth, P.; Li, Y. M.; Dehm, S. M.; Ruoslahti, E.; Pang, H. B. iRGD-liposomes enhance tumor delivery and therapeutic efficacy of antisense oligonucleotide drugs against primary prostate cancer and bone metastasis. Adv. Funct. Mater. 2021, 31, 2100478.

[31]

Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 2012, 24, 3747–3756.

[32]

Liu, X. S.; Lin, P.; Perrett, I.; Lin, J.; Liao, Y. P.; Chang, C. H.; Jiang, J. H.; Wu, N. P.; Donahue, T.; Wainberg, Z. et al. Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. J. Clin. Invest. 2017, 127, 2007–2018.

[33]

Yu, H.; Tang, Z.; Song, W.; Zhang, D.; Zhang, Y.; Chen, X. Co-administration of iRGD enhancing the anticancer efficacy of cisplatin-loaded polypeptide nanoparticles. J. Control. Release 2015, 213, e145–e146.

[34]

Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Girard, O. M.; Hanahan, D.; Mattrey, R. F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell 2009, 16, 510–520.

[35]

Hanahan, D.; Weinberg, R. A. The hallmarks of cancer. Cell 2000, 100, 57–70.

[36]

Ruoslahti, E.; Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science 1987, 238, 491–497.

[37]

Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Greenwald, D. R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010, 328, 1031–1035.

[38]

Teesalu, T.; Sugahara, K. N.; Kotamraju, V. R.; Ruoslahti, E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA 2009, 106, 16157–16162.

[39]

Wang, Y. Z.; Xie, Y.; Li, J.; Peng, Z.-H.; Sheinin, Y.; Zhou, J. P.; Oupický, D. Tumor-penetrating nanoparticles for enhanced anticancer activity of combined photodynamic and hypoxia-activated therapy. ACS Nano 2017, 11, 2227–2238.

[40]

Liu, X. S.; Chen, Y. J.; Li, H.; Huang, N.; Jin, Q.; Ren, K. F.; Ji, J. Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 2013, 7, 6244–6257.

[41]

Liu, X. S.; Zhu, H. G.; Jin, Q.; Zhou, W. B.; Colvin, V. L.; Ji, J. Small and stable phosphorylcholine zwitterionic quantum dots for weak nonspecific phagocytosis and effective Tat peptide functionalization. Adv. Healthc. Mater. 2013, 2, 352–360.

[42]

Xue, X. D.; Huang, Y.; Bo, R. N.; Jia, B.; Wu, H.; Yuan, Y.; Wang, Z. L.; Ma, Z.; Jing, D.; Xu, X. B. et al. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 2018, 9, 3653.

[43]

Yu, W. M.; Xue, X. D.; Ma, A. H.; Ruan, Y.; Zhang, H. Y.; Cheng, F.; Li, Y. P.; Pan, C. X.; Lin, T. Y. Self-assembled nanoparticle-mediated chemophototherapy reverses the drug resistance of bladder cancers through dual AKT/ERK inhibition. Adv. Ther. 2020, 3, 2000032.

[44]

Wang, Z.; Qiao, R.; Tang, N.; Lu, Z.; Wang, H.; Zhang, Z. X.; Xue, X. D.; Huang, Z. Y.; Zhang, S. R.; Zhang, G. X.; et al. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance-guided focused ultrasound ablation of lung cancer. Biomaterials 2017, 127, 25–35.

[45]

Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166.

[46]

Miura, M.; Gabel, D.; Oenbrink, G.; Fairchild, R. G. Preparation of carboranyl porphyrins for boron neutron capture therapy. Tetrahedron Lett. 1990, 31, 2247–2250.

[47]

Zhang, X. A.; Lovejoy, K. S.; Jasanoff, A.; Lippard, S. J. Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing. Proc. Natl. Acad. Sci. USA 2007, 104, 10780–10785.

[48]

Barenholz, Y. Doxil®—The first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134.

[49]

Lovell, J. F.; Chan, M. W.; Qi, Q. C.; Chen, J.; Zheng, G. Porphyrin FRET acceptors for apoptosis induction and monitoring. J. Am. Chem. Soc. 2011, 133, 18580–18582.

[50]

Rieffel, J.; Chen, F.; Kim, J.; Chen, G. Y.; Shao, W.; Shao, S.; Chitgupi, U.; Hernandez, R.; Graves, S. A.; Nickles, R. J. et al. Hexamodal imaging with porphyrin-phospholipid-coated upconversion nanoparticles. Adv. Mater. 2015, 27, 1785–1790.

[51]

Taruttis, A.; Ntziachristos, V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat. Photonics 2015, 9, 219–227.

[52]

Wang, L. V.; Yao, J. J. A practical guide to photoacoustic tomography in the life sciences. Nat. Methods 2016, 13, 627–638.

[53]

Hare, J. I.; Lammers, T.; Ashford, M. B.; Puri, S.; Storm, G.; Barry, S. T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017, 108, 25–38.

[54]

Nunes, M.; Vrignaud, P.; Vacher, S.; Richon, S.; Lièvre, A.; Cacheux, W.; Weiswald, L. B.; Massonnet, G.; Chateau-Joubert, S.; Nicolas, A. et al. Evaluating patient-derived colorectal cancer xenografts as preclinical models by comparison with patient clinical data. Cancer Res. 2015, 75, 1560–1566.

[55]

Tentler, J. J.; Tan, A. C.; Weekes, C. D.; Jimeno, A.; Leong, S.; Pitts, T. M.; Arcaroli, J. J.; Messersmith, W. A.; Eckhardt, S. G. Patient-derived tumour xenografts as models for oncology drug development. Nat. Rev. Clin. Oncol. 2012, 9, 338–350.

[56]

Zhu, Z.; Ma, A.-H.; Zhang, H. Y.; Lin, T.-Y.; Xue, X. D.; Farrukh, H.; Zhu, S. M.; Shi, W.; Yuan, R.; Cao, Z. X.; et al. Phototherapy with cancer-specific nanoporphyrin potentiates immunotherapy in bladder cancer. Clin. Cancer Res. 2022, 8, 4820–4831.

[57]

de Mendoza, T. H.; Mose, E. S.; Botta, G. P.; Braun, G. B.; Kotamraju, V. R.; French, R. P.; Suzuki, K.; Miyamura, N.; Teesalu, T.; Ruoslahti, E. et al. Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat. Commun. 2021, 12, 1541.

[58]

Willis, M. S.; Parry, T. L.; Brown, D. I.; Mota, R. I.; Huang, W.; Beak, J. Y.; Sola, M.; Zhou, C.; Hicks, S. T.; Caughey, M. C. et al. Doxorubicin exposure causes subacute cardiac atrophy dependent on the striated muscle-specific ubiquitin ligase MuRF1. Circ. Heart Fail. 2019, 12, e005234.

[59]

Zhang, S.; Liu, X. B.; Bawa-Khalfe, T.; Lu, L. S.; Lyu, Y. L.; Liu, L. F.; Yeh, E. T. H. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 2012, 18, 1639–1642.

[60]

Park, K. The beginning of the end of the nanomedicine hype. J. Control. Release 2019, 305, 221–222.

[61]

Shi, Y.; van der Meel, R.; Chen, X. Y.; Lammers, T. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 2020, 10, 7921–7924.

[62]

Wilhelm, S.; Tavares, A. J.; Dai, Q.; Ohta, S.; Audet, J.; Dvorak, H. F.; Chan, W. C. W. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 2016, 1, 16014.

Nano Research
Pages 2927-2937
Cite this article:
Li L, Lindstrom AR, Birkeland AC, et al. Deep tumor-penetrating nano-delivery strategy to improve diagnosis and therapy in patient-derived xenograft (PDX) oral cancer model and patient tissue. Nano Research, 2023, 16(2): 2927-2937. https://doi.org/10.1007/s12274-022-5047-2
Topics:

5012

Views

3

Crossref

3

Web of Science

3

Scopus

1

CSCD

Altmetrics

Received: 01 August 2022
Revised: 11 September 2022
Accepted: 13 September 2022
Published: 29 November 2022
© Tsinghua University Press 2022
Return