AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Construction of multi-homojunction TiO2 nanotubes for boosting photocatalytic hydrogen evolution by steering photogenerated charge transfer

Jinbo Xue1,2,3( )Shan Jiang1,3Chengkun Lei1,3Huan Chang1,3Jiaqi Gao1,3Xuguang Liu1,3Qi Li4( )Qianqian Shen1,3( )
Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024, China
Department of Chemistry, Tsinghua University, Beijing 100084, China
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
Show Author Information

Graphical Abstract

A simple and robust method to construct multi-homojunctions in TiO2 nanotubes with gradient doping of Ni driven by high temperature diffusion process is put forward. This multi-homojunction structure largely improves the charge carrier separation and transportation for enhancing photocatalytic hydrogen evolution.

Abstract

As an effective means to improve charge carrier separation efficiency and directional transport, the gradient doping of foreign elements to build multi-homojunction structures inside catalysts has received wide attentions. Herein, we reported a simple and robust method to construct multi-homojunctions in black TiO2 nanotubes by the gradient doping of Ni species through the diffusion of deposited Ni element on the top of black TiO2 nanotubes driven by a high temperature annealing process. The gradient Ni distribution created parts of different Fermi energy levels and energy band structures within the same black TiO2 nanotube, which subsequently formed two series of multi-homojunctions within it. This special multi-homojunction structure largely enhanced the charge carrier separation and transportation, while the low concentration of defect states near the surface layer further inhibited carrier recombination and facilitated the surface reaction. Thus, the B-TNT-2Ni sample with the optimized Ni doping concentration exhibited an enhanced hydrogen evolution rate of ~ 1.84 mmol·g−1·h−1 under visible light irradiation without the assistance of noble-metal cocatalysts, ~ four times higher than that of the pristine black TiO2 nanotube array. With the capability to create multi-homojunction structures, this approach could be readily applied to various dopant systems and catalyst materials for a broad range of technical applications.

Electronic Supplementary Material

Download File(s)
12274_2022_5050_MOESM1_ESM.pdf (3.1 MB)

References

[1]

Qi, Y. H.; Song, L. Z.; Ouyang, S. X.; Liang, X. C.; Ning, S. B.; Zhang, Q. Q.; Ye, J. H. Photoinduced defect engineering: Enhanced photothermal catalytic performance of 2D black ln2O3−x nanosheets with bifunctional oxygen vacancies. Adv. Mater. 2020, 32, 1903915.

[2]

Huang, Y. Y.; Jian, Y. P.; Li, L. H.; Li, D.; Fang, Z. Y.; Dong, W. X.; Lu, Y. H.; Luo, B. F.; Chen, R. J.; Yang, Y. C. et al. A NIR-responsive phytic acid nickel biomimetic complex anchored on carbon nitride for highly efficient solar hydrogen production. Angew. Chem., Int. Ed. 2021, 60, 5245–5249.

[3]

Yu, Z. X.; Sang, L. X.; Cao, A. R.; Gao, Y. L. Oriented electron tunneling transport in hierarchical Ag/SiO2/TiO2 nanobowl arrays for plasmonic solar water splitting. Nano Res. 2021, 15, 1593–1602.

[4]

Gao, J. Q.; Xue, J. B.; Jia, S. F.; Shen, Q. Q.; Zhang, X. C.; Jia, H. S.; Liu, X. G.; Li, Q.; Wu, Y. C. Self-doping surface oxygen vacancy-induced lattice strains for enhancing visible light-driven photocatalytic H2 evolution over black TiO2. ACS Appl. Mater. Interfaces 2021, 13, 18758–18771.

[5]

Zhu, Y. X.; Wan, T.; Wen, X. M.; Chu, D. W.; Jiang, Y. J. Tunable type I and II heterojunction of CoOx nanoparticles confined in g-C3N4 nanotubes for photocatalytic hydrogen production. Appl. Catal. B: Environ. 2019, 244, 814–822.

[6]

Li, Y.; Xue, J. B.; Shen, Q. Q.; Jia, S. F.; Li, Q.; Li, Y. X.; Liu, X. G.; Jia, H. S. Construction of a ternary spatial junction in yolk–shell nanoreactor for efficient photo-thermal catalytic hydrogen generation. Chem. Eng. J. 2021, 423, 130188.

[7]

Shen, Q. Q.; Xue, J. B.; Li, Y.; Gao, G. X.; Li, Q.; Liu, X. G.; Jia, H. S.; Xu, B. S.; Wu, Y. C.; Dillon, S. J. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Appl. Catal. B-Environ. 2021, 282, 119552.

[8]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[9]

Farkas, B.; Heszler, P.; Budai, J.; Oszkó, A.; Ottosson, M.; Geretovszky, Z. Optical, compositional and structural properties of pulsed laser deposited nitrogen-doped titanium-dioxide. Appl. Surf. Sci. 2018, 433, 149–154.

[10]

Huang, H. N.; Shi, R.; Li, Z. H.; Zhao, J. Q.; Su, C. L.; Zhang, T. R. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary. Angew. Chem., Int. Ed. 2022, 61, e202200802.

[11]

Song, H. B.; Zhou, G. W.; Wang, C. F.; Jiang, X. J.; Wu, C. C.; Li, T. D. Synthesis and photocatalytic activity of nanocrystalline TiO2 Co-doped with nitrogen and cobalt(II). Res. Chem. Intermed. 2013, 39, 747–758.

[12]

Gao, J. Q.; Xue, J. B.; Shen, Q. Q.; Liu, T. W.; Zhang, X. C.; Liu, X. G.; Jia, H. S.; Li, Q.; Wu, Y. C. A promoted photocatalysis system trade-off between thermodynamic and kinetic via hierarchical distribution dual-defects for efficient H2 evolution. Chem. Eng. J. 2022, 431, 133281.

[13]

Xue, J. B.; Shen, Q. Q.; Liang, W.; Liu, X. G.; Yang, F. Photosensitization of TiO2 nanotube arrays with CdSe nanoparticles and their photoelectrochemical performance under visible light. Electrochim. Acta 2013, 97, 10–16.

[14]

Li, J. B.; Wu, X.; Liu, S. W. Fluorinated TiO2 hollow photocatalysts for photocatalytic applications. Acta Phys. Chim. Sin. 2021, 37, 2009038.

[15]

Wu, J.; Li, L. Y.; Li, X. A.; Min, X.; Xing, Y. A novel 2D graphene oxide modified α-AgVO3 nanorods: Design, fabrication, and enhanced visible-light photocatalytic performance. J. Adv. Ceram. 2022, 11, 308–320.

[16]

Liu, L. F.; Zhang, J. L.; Tan, X. N.; Zhang, B. X.; Shi, J. B.; Cheng, X. Y.; Tan, D. X.; Han, B. X.; Zheng, L. R.; Zhang, F. Y. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020, 13, 983–988.

[17]

Kaur, N.; Ghosh, A.; Ahmad, M.; Sharma, D.; Singh, R.; Mehta, B. R. Increased visible light absorption and charge separation in 2D-3D In2S3-ZnO heterojunctions for enhanced photoelectrochemical water splitting. J. Alloys Compd. 2022, 903, 164007.

[18]

Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 2011, 4, 1781–1787.

[19]

Saito, R.; Miseki, Y.; Sayama, K. Highly efficient photoelectrochemical water splitting using a thin film photoanode of BiVO4/SnO2/WO3 multi-composite in a carbonate electrolyte. Chem. Commun. 2012, 48, 3833–3835.

[20]

Li, Y. T.; Liu, Z. F.; Li, J. W.; Ruan, M. N.; Guo, Z. G. An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3. J. Mater. Chem. A 2020, 8, 6256–6267.

[21]

Wu, T. T.; Zhen, C.; Zhu, H. Z.; Wu, J. B.; Jia, C. X.; Wang, L. Z.; Liu, G.; Park, N. G.; Cheng, H. M. Gradient Sn-doped heteroepitaxial film of faceted rutile TiO2 as an electron selective layer for efficient perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 19638–19646.

[22]

Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; Van De Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.

[23]

Miao, Z. M.; Wang, G. L.; Li, L. J.; Wang, C.; Zhang, X. F. Fabrication of black TiO2/TiO2 homojunction for enhanced photocatalytic degradation. J. Mater. Sci. 2019, 54, 14320–14329.

[24]

Liu, Y. C.; Ren, F.; Shen, S. H.; Chen, J. N.; Fu, Y. M.; Cai, G. X.; Wang, X. N.; Xing, Z.; Wu, L.; Zheng, X. D. et al. Vacancy-doped homojunction structural TiO2 nanorod photoelectrodes with greatly enhanced photoelectrochemical activity. Int. J. Hydrogen Energy 2018, 43, 2057–2063.

[25]

Wang, M.; Ren, F.; Zhou, J. G.; Cai, G. X.; Cai, L.; Hu, Y. F.; Wang, D. N.; Liu, Y. C.; Guo, L. J.; Shen, S. H. N doping to ZnO nanorods for photoelectrochemical water splitting under visible light: Engineered impurity distribution and terraced band structure. Sci. Rep. 2015, 5, 12925.

[26]

Huang, H. M.; Dai, B. Y.; Wang, W.; Lu, C. H.; Kou, J. H.; Ni, Y. R.; Wang, L. Z.; Xu, Z. Z. Oriented built-in electric field introduced by surface gradient diffusion doping for enhanced photocatalytic H2 evolution in CdS nanorods. Nano Lett. 2017, 17, 3803–3808.

[27]

Mirzaei, A.; Eddah, M.; Roualdes, S.; Ma, D. L.; Chaker, M. Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment. Chem. Eng. J. 2021, 422, 130507.

[28]

Meng, C. H.; Liu, Z. Y.; Zhang, T. R.; Zhai, J. Layered MoS2 nanoparticles on TiO2 nanotubes by a photocatalytic strategy for use as high-performance electrocatalysts in hydrogen evolution reactions. Green Chem. 2015, 17, 2764–2768.

[29]

Cheng, G.; Liu, X.; Song, X. J.; Chen, X.; Dai, W. X.; Yuan, R. S.; Fu, X. Z. Visible-light-driven deep oxidation of NO over Fe doped TiO2 catalyst: Synergic effect of Fe and oxygen vacancies. Appl. Catal. B: Environ. 2020, 277, 119196.

[30]

Hu, Y. X.; Pan, Y. Y.; Wang, Z. L.; Lin, T. E.; Gao, Y. Y.; Luo, B.; Hu, H.; Fan, F. T.; Liu, G.; Wang, L. Z. Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nat. Commun. 2020, 11, 2129.

[31]

Anitha, B.; Khadar, M. A. Anatase-rutile phase transformation and photocatalysis in peroxide gel route prepared TiO2 nanocrystals: Role of defect states. Solid State Sci. 2020, 108, 106392.

[32]

Liu, X. Y.; Ye, M.; Zhang, S. P.; Huang, G. C.; Li, C. H.; Yu, J. G.; Wong, P. K.; Liu, S. W. Enhanced photocatalytic CO2 valorization over TiO2 hollow microspheres by synergetic surface tailoring and Au decoration. J. Mater. Chem. A 2018, 6, 24245–24255.

[33]

Chen, S. B.; Yang, Z.; Chen, J. D.; Liao, J. H.; Yang, S. Y.; Peng, F.; Ding, L. X.; Yang, G. X.; Zhang, S. S.; Fang, Y. P. Electron-rich interface of Cu-Co heterostructure nanoparticle as a cocatalyst for enhancing photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 434, 134673.

[34]

Jing, F.; Guo, Y. M.; Li, B.; Chen, Y. F.; Jia, C. M.; Li, J. W. Enhanced photocatalytic hydrogen production under visible light of an organic-inorganic hybrid material based on Enzo[1,2-b:4,5-b']dithiophene polymer and TiO2. Chin. Chem. Lett. 2022, 33, 1303–1307.

[35]

Liang, Y.; Li, W.; Wang, X.; Zhou, R.; Ding, H. TiO2-ZnO/Au ternary heterojunction nanocomposite: Excellent antibacterial property and visible-light photocatalytic hydrogen production efficiency. Ceram. Int. 2022, 48, 2826–2832.

[36]

El-Shazly, A. N.; Hegazy, A. H.; El Shenawy, E. T.; Hamza, M. A.; Allam, N. K. Novel facet-engineered multi-doped TiO2 mesocrystals with unprecedented visible light photocatalytic hydrogen production. Sol. Energy Mater. Sol. Cells 2021, 220, 110825.

[37]

Peng, C.; Wei, P.; Li, X. Y.; Liu, Y. P.; Cao, Y. H.; Wang, H. J.; Yu, H.; Peng, F.; Zhang, L. Y.; Zhang, B. S. et al. High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 2018, 53, 97–107.

[38]

Jin, X. X.; Wang, R. Y.; Zhang, L. X.; Si, R.; Shen, M.; Wang, M.; Tian, J. J.; Shi, J. L. Electron configuration modulation of nickel single atoms for elevated photocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 6827–6831.

[39]

Wang, K. W.; Yang, L. M.; Wang, X.; Guo, L. P.; Cheng, G.; Zhang, C.; Jin, S. B.; Tan, B. E.; Cooper, A. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew. Chem., Int. Ed. 2017, 56, 14149–14153.

[40]

Meng, N. N.; Ren, J.; Liu, Y.; Huang, Y.; Petit, T.; Zhang, B. Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy Environ. Sci. 2018, 11, 566–571.

[41]

Yao, X. X.; Hu, X. L.; Zhang, W. J.; Gong, X. Y.; Wang, X. H.; Pillai, S. C.; Dionysiou, D. D.; Wang, D. W. Mie resonance in hollow nanoshells of ternary TiO2-Au-CdS and enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2020, 276, 119153.

[42]

Kubelka, P. The Kubelka-Munk theory of reflectance. Zeit. Für Tekn. Physik 1931, 12, 593.

[43]

Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46.

[44]

Sun, M. M.; Chen, Z. Y.; Yu, J. Q. Highly efficient visible light induced photoelectrochemical anticorrosion for 304 SS by Ni-doped TiO2. Electrochim. Acta 2013, 109, 13–19.

[45]

Gao, J. Q.; Shen, Q. Q.; Guan, R. F.; Xue, J. B.; Liu, X. G.; Jia, H. S.; Li, Q.; Wu, Y. C. Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. J. CO2 Util. 2020, 35, 205–215.

[46]

Begum, N. S.; Farveez Ahmed, H. M.; Gunashekar, K. R. Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique. Bull. Mater. Sci. 2008, 31, 747–751.

[47]

Dong, Z. B.; Ding, D. Y.; Li, T.; Ning, C. Q. Ni-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical water splitting. Appl. Surf. Sci. 2018, 443, 321–328.

[48]

Yang, L. Q.; Huang, J. F.; Shi, L.; Cao, L. Y.; Zhou, W.; Chang, K.; Meng, X. G.; Liu, G. G.; Jie, Y. N.; Ye, J. H. Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by eosin Y under visible light irradiation. Nano Energy 2017, 36, 331–340.

[49]

Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 1999, 37, 1–206.

[50]

Meng, Z. S.; Zhou, B.; Xu, J.; Li, Y. X.; Hu, X. Y.; Tian, H. W. Heterostructured nitrogen and sulfur Co-doped black TiO2/g-C3N4 photocatalyst with enhanced photocatalytic activity. Chem. Res. Chin. Univ. 2020, 36, 1045–1052.

[51]

Yang, C. Y.; Wang, Z.; Lin, T. Q.; Yin, H.; Lü, X. J.; Wan, D. Y.; Xu, T.; Zheng, C.; Lin, J. H.; Huang, F. Q. et al. Core–shell nanostructured “black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 2013, 135, 17831–17838.

[52]

Lu, W. H.; Wong, L. M.; Wang, S. J.; Zeng, K. Y. Local phenomena at grain boundaries: An alternative approach to grasp the role of oxygen vacancies in metallization of VO2. J. Materiomics. 2018, 4, 360–367.

[53]

Sakamoto, K.; Hayashi, F.; Sato, K.; Hirano, M.; Ohtsu, N. XPS spectral analysis for a multiple oxide comprising NiO, TiO2, and NiTiO3. Appl. Surf. Sci. 2020, 526, 146729.

[54]

Li, L. J.; Zhang, J.; Lei, J. L.; Xu, J.; Shang, B.; Liu, L.; Li, N. B.; Pan, F. S. O-vacancy-enriched NiO hexagonal platelets fabricated on Ni foam as a self-supported electrode for extraordinary pseudocapacitance. J. Mater. Chem. A 2018, 6, 7099–7106.

[55]

Huang, Y.; Huang, X. L.; Lian, J. S.; Xu, D.; Wang, L. M.; Zhang, X. B. Self-assembly of ultrathin porous NiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage. J. Mater. Chem. 2012, 22, 2844–2847.

[56]

Wang, Z. F.; Shen, Q. Q.; Xue, J. B.; Guan, R. F.; Li, Q.; Liu, X. G.; Jia, H. S.; Wu, Y. C. 3D hierarchically porous NiO/NF electrode for the removal of chromium(VI) from wastewater by electrocoagulation. Chem. Eng. J. 2020, 402, 126151.

[57]

Khan, H.; Swati, I. K. Fe3+-doped anatase TiO2 with d–d transition, oxygen vacancies and Ti3+ centers: Synthesis, characterization, UV–vis photocatalytic and mechanistic studies. Ind. Eng. Chem. Res. 2016, 55, 6619–6633.

[58]

Chan, C. M.; Trigwell, S.; Duerig, T. Oxidation of an NiTi alloy. Surf. Interface Anal. 1990, 15, 349–354.

[59]

Abdullah, S. A.; Sahdan, M. Z.; Nayan, N.; Embong, Z.; Hak, C. R. C.; Adriyanto, F. Neutron beam interaction with rutile TiO2 single crystal (111): Raman and XPS study on Ti3+-oxygen vacancy formation. Mater. Lett. 2020, 263, 127143.

[60]

Lim, D. K.; Kwak, N. W.; Kim, J. S.; Kim, H.; Kim, B. K.; Kim, Y. C.; Jung, W. Ni diffusion in ceria lattice: A combined experimental and theoretical study. Acta Mater. 2021, 219, 117252.

[61]

Cheng, M.; Yang, L.; Li, H. Y.; Bai, W.; Xiao, C.; Xie, Y. Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation. Nano Res. 2021, 14, 3365–3371.

Nano Research
Pages 2259-2270
Cite this article:
Xue J, Jiang S, Lei C, et al. Construction of multi-homojunction TiO2 nanotubes for boosting photocatalytic hydrogen evolution by steering photogenerated charge transfer. Nano Research, 2023, 16(2): 2259-2270. https://doi.org/10.1007/s12274-022-5050-7
Topics:

9766

Views

23

Crossref

23

Web of Science

23

Scopus

1

CSCD

Altmetrics

Received: 18 May 2022
Revised: 12 September 2022
Accepted: 14 September 2022
Published: 15 November 2022
© Tsinghua University Press 2022
Return