Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Electrochemical oxygen reduction reaction (ORR) for preparing hydrogen peroxide (H2O2) is a promising way to replace the anthraquinone method. The key to H2O2 production is the development of catalysts to regulate the oxygen reduction reaction pathway. Here, nitrogen-doped Nb2CTx was prepared by NH3 annealing method. Compared with precursor Nb2AlC (67.01%) and pure Nb2CTx (75.70%), nitrogen-doped Nb2CTx exhibited excellent performance for 2e− ORR with > 90% H2O2 selectivity (at 0.4 V vs. reversible hydrogen electrode (RHE)). Faradic efficiency of nitrogen-doped Nb2CTx reached 80.75%, whereas those for Nb2AlC and Nb2CTx were 60.35% and 39.27%, respectively. A desirable catalytic stability for 50 h was observed. Density functional theory (DFT) calculations indicated excellent activity of the nitrogen-doped Nb2CTx was attributed to the introduction of N. This excellent activity was conducive to the adsorption of oxygen and promoted the formation of the OOH intermediate. This work can serve as an important reference for regulating the electronic structure of MXene to expand the application area in the electrochemical field.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I. B.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Sheng, H. Y.; Janes, A. N.; Ross, R. D.; Kaiman, D.; Huang, J. Z.; Song, B.; Schmidt, J. R.; Jin, S. Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy Environ. Sci. 2020, 13, 4189–4203.
Tan, X.; Tahini, H. A.; Smith, S. C. Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide. Mater. Horiz. 2019, 6, 1409–1415.
Xi, J. B.; Yang, S.; Silvioli, L.; Cao, S. F.; Liu, P.; Chen, Q. Y.; Zhao, Y. Y.; Sun, H. Y.; Hansen, J. N.; Haraldsted, J. P. B. et al. Highly active, selective, and stable Pd single-atom catalyst anchored on N-doped hollow carbon sphere for electrochemical H2O2 synthesis under acidic conditions. J. Catal. 2021, 393, 313–323.
Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. Highconcentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.
Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W. et al. Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 2013, 12, 1137–1143.
Jirkovský, J. S.; Panas, I.; Ahlberg, E.; Halasa, M.; Romani, S.; Schiffrin, D. J. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 2011, 133, 19432–19441.
Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.
Wang, M. J.; Dong, X.; Meng, Z. D.; Hu, Z. W.; Lin, Y. G.; Peng, C. K.; Wang, H. S.; Pao, C. W.; Ding, S. Y.; Li, Y. Y. et al. An efficient interfacial synthesis of two-dimensional metal–organic framework nanosheets for electrochemical hydrogen peroxide production. Angew. Chem., Int. Ed. 2021, 60, 11190–11195.
Wang, M. J.; Zhang, N.; Feng, Y. G.; Hu, Z. W.; Shao, Q.; Huang, X. Q. Partially pyrolyzed binary metal–organic framework nanosheets for efficient electrochemical hydrogen peroxide synthesis. Angew. Chem., Int. Ed. 2020, 59, 14373–14377.
Zhao, K.; Su, Y.; Quan, X.; Liu, Y. M.; Chen, S.; Yu, H. T. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 2018, 357, 118–126.
Zhang, C. Y.; Liu, G. Z.; Ning, B.; Qian, S. R.; Zheng, D. N.; Wang, L. Highly efficient electrochemical generation of H2O2 on N/O commodified defective carbon. Int. J. Hydrogen Energy 2021, 46, 14277–14287.
Fellinger, T. P.; Hasché, F.; Strasser, P.; Antonietti, M. Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2012, 134, 4072–4075.
Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem. 2021, 133, 10677–10681.
Lenarda, A.; Bevilacqua, M.; Tavagnacco, C.; Nasi, L.; Criado, A.; Vizza, F.; Melchionna, M.; Prato, M.; Fornasiero, P. Selective electrocatalytic H2O2 generation by cobalt@N-doped graphitic carbon core–shell nanohybrids. ChemSusChem 2019, 12, 1664–1672.
Kim, H.; Lim, J.; Lee, S.; Kim, H. H.; Lee, C.; Lee, J.; Choi, W. Spontaneous generation of H2O2 and hydroxyl radical through O2 reduction on copper phosphide under ambient aqueous condition. Environ. Sci. Technol. 2019, 53, 2918–2925.
Wang, L. K.; Gennari, M.; Cantú Reinhard, F. G.; Gutiérrez, J.; Morozan, A.; Philouze, C.; Demeshko, S.; Artero, V.; Meyer, F.; de Visser, S. P. et al. A non-heme diiron complex for (electro)catalytic reduction of dioxygen: Tuning the selectivity through electron delivery. J. Am. Chem. Soc. 2019, 141, 8244–8253.
Monte-Pérez, I.; Kundu, S.; Chandra, A.; Craigo, K. E.; Chernev, P.; Kuhlmann, U.; Dau, H.; Hildebrandt, P.; Greco, C.; Van Stappen, C. et al. Temperature dependence of the catalytic two- versus four-electron reduction of dioxygen by a hexanuclear cobalt complex. J. Am. Chem. Soc. 2017, 139, 15033–15042.
Hooe, S. L.; Machan, C. W. Dioxygen reduction to hydrogen peroxide by a molecular Mn complex: Mechanistic divergence between homogeneous and heterogeneous reductants. J. Am. Chem. Soc. 2019, 141, 4379–4387.
Wang, Y. H.; Pegis, M. L.; Mayer, J. M.; Stahl, S. S. Molecular cobalt catalysts for O2 reduction: Low-overpotential production of H2O2 and comparison with iron-based catalysts. J. Am. Chem. Soc. 2017, 139, 16458–16461.
Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. Adv. Mater. 2019, 31, 1808173.
Kajiyama, S.; Szabova, L.; Sodeyama, K.; Iinuma, H.; Morita, R.; Gotoh, K.; Tateyama, Y.; Okubo, M.; Yamada, A. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 2016, 10, 3334–3341.
Yun, J.; Echols, I.; Flouda, P.; Chen, Y. J.; Wang, S. Y.; Zhao, X. F.; Holta, D.; Radovic, M.; Green, M. J.; Naraghi, M. et al. Layer-bylayer assembly of reduced graphene oxide and MXene nanosheets for wire-shaped flexible supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 14068–14076.
Fan, Z. M.; Wang, Y. S.; Xie, Z. M.; Xu, X. Q.; Yuan, Y.; Cheng, Z. J.; Liu, Y. Y. A nanoporous MXene film enables flexible supercapacitors with high energy storage. Nanoscale 2018, 10, 9642–9652.
Liang, W. Y.; Zhitomirsky, I. MXene-carbon nanotube composite electrodes for high active mass asymmetric supercapacitors. J. Mater. Chem. A 2021, 9, 10335–10344.
Kumar, S.; Kang, D.; Hong, H.; Rehman, M. A.; Lee, Y. J.; Lee, N.; Seo, Y. Effect of Ti3C2Tx MXenes etched at elevated temperatures using concentrated acid on binder-free supercapacitors. RSC Adv. 2020, 10, 41837–41845.
Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016, 1, 589–594.
Lu, C. J.; Yang, L.; Yan, B. Z.; Sun, L. B.; Zhang, P. G.; Zhang, W.; Sun, Z. M. Nitrogen-doped Ti3C2 MXene: Mechanism investigation and electrochemical analysis. Adv. Funct. Mater. 2020, 30, 2000852.
Wen, Y. Y.; Li, R.; Liu, J. H.; Wei, Z. T.; Li, S. H.; Du, L. L.; Zu, K.; Li, Z. X.; Pan, Y.; Hu, H. A temperature-dependent phosphorus doping on Ti3C2Tx MXene for enhanced supercapacitance. J. Colloid Interface Sci. 2021, 604, 239–247.
Yu, L. H.; Fan, Z. D.; Shao, Y. L.; Tian, Z. N.; Sun, J. Y.; Liu, Z. F. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 2019, 9, 1901839.
Bao, W. Z.; Liu, L.; Wang, C. Y.; Choi, S.; Wang, D.; Wang, G. X. Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1702485.
Gao, L. F.; Ma, C. Y.; Wei, S. R.; Kuklin, A. V.; Zhang, H.; Ågren, H. Applications of few-layer Nb2C MXene: Narrow-band photodetectors and femtosecond mode-locked fiber lasers. ACS Nano 2021, 15, 954–965.
Lin, H.; Gao, S. S.; Dai, C.; Chen, Y.; Shi, J. L. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247.
Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lyu, M.; Dai, L. M.; Wang, L. Z. Nitrogen-doped Ti3C2Tx MXene electrodes for highperformance supercapacitors. Nano Energy 2017, 38, 368–376.
Wang, Z. Q.; Xuan, J. N.; Zhao, Z. G.; Li, Q. W.; Geng, F. X. Versatile cutting method for producing fluorescent ultrasmall MXene sheets. ACS Nano 2017, 11, 11559–11565.
Yan, P. T.; Zhang, R. J.; Jia, J.; Wu, C.; Zhou, A. G.; Xu, J.; Zhang, X. S. Enhanced supercapacitive performance of delaminated twodimensional titanium carbide/carbon nanotube composites in alkaline electrolyte. J. Power Sources 2015, 284, 38–43.
Wang, K.; Zhou, Y. F.; Xu, W. T.; Huang, D. C.; Wang, Z. G.; Hong, M. C. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceram. Int. 2016, 42, 8419–8424.
Li, G. Y.; Li, N.; Peng, S. T.; He, B.; Wang, J.; Du, Y.; Zhang, W. B.; Han, K.; Dang, F. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium-oxygen batteries. Adv. Energy Mater. 2021, 11, 2002721.
Lan, Z. Q.; Fu, H.; Zhao, R. L.; Liu, H. Z.; Zhou, W. Z.; Ning, H.; Guo, J. Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chem. Eng. J. 2022, 431, 133985.
Lian, M. L.; Shi, Y. Q.; Zhang, W.; Zhao, J. B.; Chen, D. Nitrogen and sulfur co-doped Nb2C-MXene nanosheets for the ultrasensitive electrochemical detection dopamine under acidic conditions in gastric juice. J. Electroanal. Chem. 2022, 904, 115849.