AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress and perspective in additive manufacturing of EMI shielding functional polymer nanocomposites

Amirjalal Jalali1,2Ruiyan Zhang3Reza Rahmati2Mohammadreza Nofar4Mohini Sain1( )Chul B. Park2( )
Center for Biocomposites & Biomaterials Processing, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, Toronto, Ontario M5S 3B3, Canada
Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
Metallurgical & Materials Engineering Department, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
Show Author Information

Graphical Abstract

This review summarizes the latest advancement in additive manufacturing of functional polymer nanocomposites for electromagnetic interference (EMI) shielding application.

Abstract

Because of rapid progress in the electronics industry, the market has faced a huge demand for novel materials in the field of electromagnetic interference (EMI) shielding. Conductive functional polymer composites have demonstrated great potential to fulfill this requirement. To synthesize the polymeric composites, functional conductive nanoadditives such as graphene, carbon nanotubes, and MXene are commonly added to polymeric matrices, and the conductive polymer nanocomposites exhibit promising electrical conductivity as well as EMI shielding performance. Additive manufacturing (AM), also referred to as three-dimensional (3D) printing, has been increasingly employed to fabricate complicated geometry components in the medical, aerospace, and automotive industries. AM has also been used to fabricate advanced EMI shielding materials for sensors, supercapacitors, energy storage devices, and flexible electronics. This review aims at introducing the different 3D printing methods applied for the fabrication of EMI shielding polymer nanocomposites. The impact of the AM process on the functionality of the samples is also reviewed. Additionally, the influence of the nanofiller type and amount on the microstructure and performance of the fabricated nanocomposites is discussed. Finally, the prospects and recommended works for future study are outlined.

References

[1]

Abbasi, H.; Antunes, M.; Velasco, J. I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373.

[2]

Liu, S.; Qin, S. H.; Jiang, Y.; Song, P. G.; Wang, H. Lightweight high-performance carbon-polymer nanocomposites for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106376.

[3]

Wei, L. F.; Ma, J. Z.; Ma, L.; Zhao, C. X.; Xu, M. L.; Qi, Q.; Zhang, W. B.; Zhang, L.; He, X.; Park, C. B. Computational optimizing the electromagnetic wave reflectivity of double-layered polymer nanocomposites. Small Methods 2022, 6, 2101510.

[4]

Wang, X. Y.; Ma, L.; Zhao, Q. W.; Hyun, B. G.; Liu, H. S.; Yu, L.; Wang, J.; Park, C. B. Flexible poly(ether-block-amide)/carbon nanotube composites for electromagnetic interference shielding. ACS Appl. Nano Mater. 2022, 5, 7598–7608.

[5]

Wang, G. L.; Wang, L.; Mark, L. H.; Shaayegan, V.; Wang, G. Z.; Li, H. P.; Zhao, G. Q.; Park, C. B. Ultralow-threshold and lightweight biodegradable porous PLA/MWCNT with segregated conductive networks for high-performance thermal insulation and electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2018, 10, 1195–1203.

[6]

Panahi-Sarmad, M.; Noroozi, M.; Xiao, X. L.; Park, C. B. Recent advances in graphene-based polymer nanocomposites and foams for electromagnetic interference shielding applications. Ind. Eng. Chem. Res. 2022, 61, 1545–1568.

[7]

Hong, X. H.; Chung, D. D. L. Carbon nanofiber mats for electromagnetic interference shielding. Carbon 2017, 111, 529–537.

[8]

Sang, G. L.; Wang, C.; Zhao, Y.; He, G.; Zhang, Q. F.; Yang, M. H.; Zhao, S. H.; Xu, P.; Xi, X. Q.; Yang, J. L. Ni@CNTs/Al2O3 ceramic composites with interfacial solder strengthen the segregated network for high toughness and excellent electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2022, 14, 4443–4455.

[9]

Xu, Y. T.; Wang, Y.; Zhou, C. G.; Sun, W. J.; Dai, K.; Tang, J. H.; Lei, J.; Yan, D. X.; Li, Z. M. An electrically conductive polymer composite with a co-continuous segregated structure for enhanced mechanical performance. J. Mater. Chem. C 2020, 8, 11546–11554.

[10]

Geetha, S.; Kumar, K. K. S.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C. EMI shielding: Methods and materials—A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086.

[11]

Chung, D. D. L. Materials for electromagnetic interference shielding. J. Mater. Eng. Perform. 2000, 9, 350–354.

[12]

Zhao, B.; Hamidinejad, M.; Wang, S.; Bai, P. W.; Che, R. C.; Zhang, R.; Park, C. B. Advances in electromagnetic shielding properties of composite foams. J. Mater. Chem. A 2021, 9, 8896–8949.

[13]
Pandey, R.; Tekumalla, S.; Gupta, M. Chapter 21—EMI shielding of metals, alloys, and composites. In Materials for Potential EMI Shielding Applications; Joseph, K.; Wilson, R.; George, G., Eds.; Elsevier: Amsterdam, 2020; pp 341–355.
[14]

Lee, S. H.; Yu, S.; Shahzad, F.; Hong, J.; Noh, S. J.; Kim, W. N.; Hong, S. M.; Koo, C. M. Low percolation 3D Cu and Ag shell network composites for EMI shielding and thermal conduction. Compos. Sci. Technol. 2019, 182, 107778.

[15]

Zhang, Y.; Zhang, B. L.; Li, K.; Zhao, G. L.; Guo, S. M. Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites. J. Alloys Compd. 2018, 734, 220–228.

[16]

Yao, Y. Y.; Jin, S. H.; Zou, H. M.; Li, L. J.; Ma, X. L.; Lv, G.; Gao, F.; Lv, X. J.; Shu, Q. H. Polymer-based lightweight materials for electromagnetic interference shielding: A review. J. Mater. Sci. 2021, 56, 6549–6580.

[17]

Li, J. L.; Liu, X. X.; Feng, Y.; Yin, J. H. Recent progress in polymer/two-dimensional nanosheets composites with novel performances. Progr. Polym. Sci. 2022, 126, 101505.

[18]

Pang, H.; Xu, L.; Yan, D. X.; Li, Z. M. Conductive polymer composites with segregated structures. Progr. Polym. Sci. 2014, 39, 1908–1933.

[19]

Wang, M.; Tang, X. H.; Cai, J. H.; Wu, H.; Shen, J. B.; Guo, S. Y. Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: A review. Carbon 2021, 177, 377–402.

[20]

Xu, Y. F.; Wang, X. J.; Hao, Q. A mini review on thermally conductive polymers and polymer-based composites. Compos. Commun. 2021, 24, 100617.

[21]

Shown, I.; Ganguly, A.; Chen, L. C.; Chen, K. H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3, 2–26.

[22]

Pande, S.; Chaudhary, A.; Patel, D.; Singh, B. P.; Mathur, R. B. Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. RSC Adv. 2014, 4, 13839–13849.

[23]

Chen, J. W.; Zhu, Y. T.; Huang, J. R.; Zhang, J. X.; Pan, D.; Zhou, J. Y.; Ryu, J. E.; Umar, A.; Guo, Z. H. Advances in responsively conductive polymer composites and sensing applications. Polym. Rev. 2021, 61, 157–193.

[24]

Wang, J. F.; Wang, J. R.; Kong, Z.; Lv, K. L.; Teng, C.; Zhu, Y. Conducting-polymer-based materials for electrochemical energy conversion and storage. Adv. Mater. 2017, 29, 1703044.

[25]

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

[26]

Elsheikh, A. H.; Panchal, H.; Shanmugan, S.; Muthuramalingam, T.; El-Kassas, A. M.; Ramesh, B. Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment. Cleaner Eng. Technol. 2022, 8, 100450.

[27]

Feng, Y.; Xue, J. P.; Zhang, T. D.; Chi, Q. G.; Li, J. L.; Chen, Q. G.; Wang, J. J.; Chen, L. Q. Double-gradients design of polymer nanocomposites with high energy density. Energy Storage Mater. 2022, 44, 73–81.

[28]
Akpan, E. I.; Shen, X.; Wetzel, B.; Friedrich, K. 2—Design and synthesis of polymer nanocomposites. In Polymer Composites with Functionalized Nanoparticles; Pielichowski, K.; Majka, T. M., Eds.; Elsevier: Amsterdam, 2019, pp 47–83.
[29]

Fu, S. Y.; Sun, Z.; Huang, P.; Li, Y. Q.; Hu, N. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater. Sci. 2019, 1, 2–30.

[30]

Bheema, R. K.; Vuba, K. K.; Etakula, N.; Etika, K. C. Enhanced thermo-mechanical, thermal and EMI shielding properties of MWNT/MAgPP/PP nanocomposites prepared by extrusion. Compos. Part C Open Access 2021, 4, 100086.

[31]

Lee, S. H.; Lee, Y.; Jang, M. G.; Han, C. H.; Kim, W. N. Comparative study of EMI shielding effectiveness for carbon fiber pultruded polypropylene/poly(lactic acid)/multiwall CNT composites prepared by injection molding versus screw extrusion. J. Appl. Polym. Sci. 2017, 134, 45222.

[32]

Wang, G. L.; Zhao, G. Q.; Wang, S.; Zhang, L.; Park, C. B. Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J. Mater. Chem. C 2018, 6, 6847–6859.

[33]

Shaayegan, V.; Ameli, A.; Wang, S.; Park, C. B. Experimental observation and modeling of fiber rotation and translation during foam injection molding of polymer composites. Compos. Part A Appl. Sci. Manuf. 2016, 88, 67–74.

[34]

Zou, K. K.; Yi, S. Q.; Li, X. Y.; Li, J.; Xu, Y. T.; Li, Z. M.; Yan, D. X.; Wang, H. L. Efficient electromagnetic interference shielding of flexible Ag microfiber sponge/polydimethylsiloxane composite constructed by blow spinning. Compos. Sci. Technol. 2022, 220, 109281.

[35]

Sharma, G. K.; James, N. R. Progress in electrospun polymer composite fibers for microwave absorption and electromagnetic interference shielding. ACS Appl. Electr. Mater. 2021, 3, 4657–4680.

[36]

El Moumen, A.; Tarfaoui, M.; Lafdi, K. Additive manufacturing of polymer composites: Processing and modeling approaches. Compos. Part B: Eng. 2019, 171, 166–182.

[37]

Tan, L. J.; Zhu, W.; Zhou, K. Recent progress on polymer materials for additive manufacturing. Adv. Funct. Mater. 2020, 30, 2003062.

[38]

Ligon, S. C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017, 117, 10212–10290.

[39]

González-Henríquez, C. M.; Sarabia-Vallejos, M. A.; Rodriguez-Hernandez, J. Polymers for additive manufacturing and 4D-printing: Materials, methodologies, and biomedical applications. Progr. Polym. Sci. 2019, 94, 57–116.

[40]

Singh, S.; Ramakrishna, S. Biomedical applications of additive manufacturing: Present and future. Curr. Opin. Biomed. Eng. 2017, 2, 105–115.

[41]
Schiller, G. J. Additive manufacturing for aerospace. In 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 2015, pp 1–8.
[42]

Paolini, A.; Kollmannsberger, S.; Rank, E. Additive manufacturing in construction: A review on processes, applications, and digital planning methods. Addit. Manuf. 2019, 30, 100894.

[43]

Böckin, D.; Tillman, A. M. Environmental assessment of additive manufacturing in the automotive industry. J. Clean. Prod. 2019, 226, 977–987.

[44]

Mohammed, M. G.; Kramer, R. All-printed flexible and stretchable electronics. Adv. Mater. 2017, 29, 1604965.

[45]

Yu, X. W.; Gong, X. T.; Podder, C.; Ludwig, B.; Chen, I. M.; Shou, W.; Alvidrez, A.; Chen, G. D.; Huang, X.; Pan, H. Additive manufacturing of sandwich-structured conductors for applications in flexible and stretchable electronics. Adv. Eng. Mater. 2021, 23, 2100286.

[46]
Aswathi, M. K.; Rane, A. V.; Ajitha, A. R.; Thomas, S.; Jaroszewski, M. EMI shielding fundamentals. In Advanced Materials for Electromagnetic Shielding: Fundamentals, Properties, and Applications; Jaroszewski, M.; Thomas, S.; Rane, A. V., Eds.; John Wiley & Sons, Inc.: London, 2018; pp 1–9.
[47]

Wang, X. Y.; Liao, S. Y.; Wan, Y. J.; Zhu, P. L.; Hu, Y. G.; Zhao, T.; Sun, R.; Wong, C. P. Electromagnetic interference shielding materials: Recent progress, structure design, and future perspective. J. Mater. Chem. C 2022, 10, 44–72.

[48]

Wang, Y. Y.; Jing, X. L. Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 2005, 16, 344–351.

[49]

Verma, P.; Saini, P.; Choudhary, V. Designing of carbon nanotube/polymer composites using melt recirculation approach: Effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater. Des. 2015, 88, 269–277.

[50]

Duan, H. J.; Zhu, H. X.; Yang, J. M.; Gao, J. F.; Yang, Y. Q.; Xu, L.; Zhao, G. Z.; Liu, Y. Q. Effect of carbon nanofiller dimension on synergistic EMI shielding network of epoxy/metal conductive foams. Compos. Part A Appl. Sci. Manuf. 2019, 118, 41–48.

[51]

Drakakis, E.; Kymakis, E.; Tzagkarakis, G.; Louloudakis, D.; Katharakis, M.; Kenanakis, G.; Suchea, M.; Tudose, V.; Koudoumas, E. A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers. Appl. Surf. Sci. 2017, 398, 15–18.

[52]

Watanabe, A. O.; Raj, P. M.; Wong, D.; Mullapudi, R.; Tummala, R. Multilayered electromagnetic interference shielding structures for suppressing magnetic field coupling. J. Electr. Mater. 2018, 47, 5243–5250.

[53]

Kruželák, J.; Kvasničáková, A.; Hložeková, K.; Hudec, I. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv. 2021, 3, 123–172.

[54]

Luo, X. G.; Pu, M. B.; Guo, Y. H.; Li, X.; Zhang, F.; Ma, X. L. Catenary functions meet electromagnetic waves: Opportunities and promises. Adv. Opt. Mater. 2020, 8, 2001194.

[55]

Kragh, H. The Lorenz–Lorentz formula: Origin and early history. Substantia 2018, 2, 7–18.

[56]

Wang, H.; Li, S. N.; Liu, M. Y.; Li, J. H.; Zhou, X. Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol. Mater. Eng. 2021, 306, 2100032.

[57]

Chakradhary, V. K.; Juneja, S.; Akhtar, M. J. Correlation between EMI shielding and reflection loss mechanism for carbon nanofiber/epoxy nanocomposite. Mater. Today Commun. 2020, 25, 101386.

[58]

Saini, P.; Choudhary, V.; Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Polyaniline-MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 2009, 113, 919–926.

[59]

Sun, B. B.; Sun, S. J.; He, P.; Mi, H. Y.; Dong, B. B.; Liu, C. T.; Shen, C. Y. Asymmetric layered structural design with segregated conductive network for absorption-dominated high-performance electromagnetic interference shielding. Chem. Eng. J. 2021, 416, 129083.

[60]

Kumar, A.; Alegaonkar, P. S. Impressive transmission mode electromagnetic interference shielding parameters of graphene-like nanocarbon/polyurethane nanocomposites for short range tracking countermeasures. ACS Appl. Mater. Interfaces 2015, 7, 14833–14842.

[61]

Lan, C. T.; Zou, L. H.; Wang, N.; Qiu, Y. P.; Ma, Y. Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics. J. Colloid Interface Sci. 2021, 590, 467–475.

[62]

Al-Saleh, M. H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 2009, 47, 1738–1746.

[63]

Shen, B.; Li, Y.; Zhai, W. T.; Zheng, W. G. Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057.

[64]

Liu, Z. F.; Bai, G.; Huang, Y.; Ma, Y. F.; Du, F.; Li, F. F.; Guo, T. Y.; Chen, Y. S. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 2007, 45, 821–827.

[65]

Hong, Y. K.; Lee, C. Y.; Jeong, C. K.; Lee, D. E.; Kim, K.; Joo, J. Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 2003, 74, 1098–1102.

[66]
Kondawar, S. B.; Modak, P. R. Chapter 2—Theory of EMI shielding. In Materials for Potential EMI Shielding Applications; Joseph, K.; Wilson, R.; George, G., Eds.; Elsevier: Amsterdam, 2020; pp 9–25.
[67]

Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 2012, 50, 5126–5134.

[68]

Madrid, A. P. M.; Vrech, S. M.; Sanchez, M. A.; Rodriguez, A. P. Advances in additive manufacturing for bone tissue engineering scaffolds. Mater. Sci. Eng. C 2019, 100, 631–644.

[69]

Hart, K. R.; Frketic, J. B.; Brown, J. R. Recycling meal-ready-to-eat (MRE) pouches into polymer filament for material extrusion additive manufacturing. Addit. Manuf. 2018, 21, 536–543.

[70]

Beaman, J. J.; Bourell, D. L.; Seepersad, C. C.; Kovar, D. Additive manufacturing review: Early past to current practice. J. Manuf. Sci. Eng. 2020, 142, 110812.

[71]

Bourell, D.; Kruth, J. P.; Leu, M.; Levy, G.; Rosen, D.; Beese, A. M.; Clare, A. Materials for additive manufacturing. CIRP Ann. 2017, 66, 659–681.

[72]

Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive manufacturing of metals. Acta Mater. 2016, 117, 371–392.

[73]

Frazier, W. E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928.

[74]

Zocca, A.; Colombo, P.; Gomes, C. M.; Günster, J. Additive manufacturing of ceramics: Issues, potentialities, and opportunities. J. Am. Ceram. Soc. 2015, 98, 1983–2001.

[75]

Melchels, F. P. W.; Domingos, M. A. N.; Klein, T. J.; Malda, J.; Bartolo, P. J.; Hutmacher, D. W. Additive manufacturing of tissues and organs. Progr. Polym. Sci. 2012, 37, 1079–1104.

[76]

Kabb, C. P.; O’Bryan, C. S.; Deng, C. C.; Angelini, T. E.; Sumerlin, B. S. Photoreversible covalent hydrogels for soft-matter additive manufacturing. ACS Appl. Mater. Interfaces 2018, 10, 16793–16801.

[77]

Park, S. H.; Su, R. T.; Jeong, J.; Guo, S. Z.; Qiu, K. Y.; Joung, D.; Meng, F. B.; Mcalpine, M. C. 3D printed polymer photodetectors. Adv. Mater. 2018, 30, 1803980.

[78]
Lucyszyn, S.; Shang, X. B.; Otter, W. J.; Myant, C. W.; Cheng, R.; Ridler, N. M. Polymer-based 3D printed millimeter-wave components for spacecraft payloads. In 2018 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Ann Arbor, MI, USA, 2018, pp 1–3.
[79]
Najmon, J. C.; Raeisi, S.; Tovar, A. Review of additive manufacturing technologies and applications in the aerospace industry. In Additive Manufacturing for the Aerospace Industry; Froes, F.; Boyer, R., Eds.; Elsevier: Oxford, 2019; pp 7–31.
[80]

Kumar, S.; Kruth, J. P. Composites by rapid prototyping technology. Mater. Des. 2010, 31, 850–856.

[81]
Safari, A.; Ebrahimi, M.; Turcu, S.; Hall, A.; Brennan, R.; Hagh, N. M. Layered manufacturing for prototyping of novel transducers. In 2002 IEEE Ultrasonics Symposium, 2002. Proceedings, Munich, Germany, 2002, pp 1087–1096.
[82]

Chatham, C. A.; Long, T. E.; Williams, C. B. A review of the process physics and material screening methods for polymer powder bed fusion additive manufacturing. Progr. Polym. Sci. 2019, 93, 68–95.

[83]
Bain, E. D. Polymer powder bed fusion additive manufacturing: Recent developments in materials, processes, and applications. In Polymer-Based Additive Manufacturing: Recent Developments; Seppala, J. E.; Kotula, A. P.; Snyder, C. R., Eds.; American Chemical Society: USA, 2019; pp 7–36.
[84]

Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A. W. Selective laser sintering (SLS) 3D printing of medicines. Int. J. Pharm. 2017, 529, 285–293.

[85]

Mohamed, O. A.; Masood, S. H.; Bhowmik, J. L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects. Adv. Manuf. 2015, 3, 42–53.

[86]

Daminabo, S. C.; Goel, S.; Grammatikos, S. A.; Nezhad, H. Y.; Thakur, V. K. Fused deposition modeling-based additive manufacturing (3D printing): Techniques for polymer material systems. Mater. Today Chem. 2020, 16, 100248.

[87]

Gao, X.; Qi, S. X.; Kuang, X.; Su, Y. L.; Li, J.; Wang, D. J. Fused filament fabrication of polymer materials: A review of interlayer bond. Addit. Manuf. 2021, 37, 101658.

[88]

Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R. B. Fused filament fabrication of fiber-reinforced polymers: A review. Addit. Manuf. 2018, 21, 1–16.

[89]

Singh, S.; Singh, G.; Prakash, C.; Ramakrishna, S. Current status and future directions of fused filament fabrication. J. Manuf. Process. 2020, 55, 288–306.

[90]
Addtive Blog. FDM – Fused deposition modeling (or FFF, PJP, LDP). https://www.additive.blog/knowledge-base/3d-printers/fdm-fused-deposition-modeling-fff-pjp-lpd/ (accessed Jul 1, 2022).
[91]

Cesarano, J.; Steve G. Robocasting: A new technique for the freeform fabrication of near-net-shape ceramics. Mater. Technol. 1997, 12, 98–100.

[92]

Li, L. Y.; Lin, Q. M.; Tang, M.; Duncan, A. J. E.; Ke, C. F. Advanced polymer designs for direct-ink-write 3D printing. Chem. —Eur. J. 2019, 25, 10768.

[93]

Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 2006, 16, 2193–2204.

[94]

Tagliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Direct ink writing of energy materials. Mater. Adv. 2021, 2, 540–563.

[95]

Nguyen, T. H. M.; Jeong, T. H.; Kim, S. Y.; Kim, K. B.; Ha, T. H.; Ahn, S. J.; Kim, Y. H. Porous structures prepared by a novel route: Combination of digital light processing 3D printing and leaching method. J. Manuf. Process. 2021, 67, 46–51.

[96]

Li, Y.; Mao, Q. J.; Yin, J.; Wang, Y. F.; Fu, J. Z.; Huang, Y. Theoretical prediction and experimental validation of the digital light processing (DLP) working curve for photocurable materials. Addit. Manuf. 2021, 37, 101716.

[97]

Manapat, J. Z.; Chen, Q. Y.; Ye, P. R.; Advincula, R. C. 3D printing of polymer nanocomposites via stereolithography. Macromol. Mater. Eng. 2017, 302, 1600553.

[98]

Jabari, E.; Liravi, F.; Davoodi, E.; Lin, L. W.; Toyserkani, E. High speed 3D material-jetting additive manufacturing of viscous graphene-based ink with high electrical conductivity. Addit. Manuf. 2020, 35, 101330.

[99]

Markandan, K.; Lai, C. Q. Enhanced mechanical properties of 3D printed graphene–polymer composite lattices at very low graphene concentrations. Compos. Part A Appl. Sci. Manuf. 2020, 129, 105726.

[100]

Hwang, S.; Reyes, E. I.; Moon, K. S.; Rumpf, R. C.; Kim, N. S. Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J. Electr. Mater. 2015, 44, 771–777.

[101]

Valino, A. D.; Dizon, J. R. C.; Espera, A. H.; Chen, Q. Y.; Messman, J.; Advincula, R. C. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Progr. Polym. Sci. 2019, 98, 101162.

[102]

Saeed, K.; McIlhagger, A.; Harkin-Jones, E.; Kelly, J.; Archer, E. Predication of the in-plane mechanical properties of continuous carbon fibre reinforced 3D printed polymer composites using classical laminated-plate theory. Compos. Struct. 2021, 259, 113226.

[103]

Valvez, S.; Silva, A. P.; Reis, P. N. B.; Berto, F. Annealing effect on mechanical properties of 3D printed composites. Proced. Struct. Integr. 2022, 37, 738–745.

[104]

Christiyan, K. G. J.; Chandrasekhar, U.; Venkateswarlu, K. A study on the influence of process parameters on the mechanical properties of 3D printed ABS composite. IOP Conf. Ser. Mater. Sci. Eng. 2016, 114, 012109.

[105]

Wang, S. H.; Ma, Y. B.; Deng, Z. C.; Zhang, S.; Cai, J. X. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polym. Test. 2020, 86, 106483.

[106]

Papon, E. A.; Haque, A.; Spear, S. K. Effects of functionalization and annealing in enhancing the interfacial bonding and mechanical properties of 3D printed fiber-reinforced composites. Mater. Today Commun. 2020, 25, 101365.

[107]

Banjo, A. D.; Agrawal, V.; Auad, M. L.; Celestine, A. D. N. Moisture-induced changes in the mechanical behavior of 3D printed polymers. Compos. Part C Open Access 2022, 7, 100243.

[108]

Tanveer, Q.; Mishra, G.; Mishra, S.; Sharma, R. Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed parts—A current review. Mater. Today Proc. 2022, 62, 100–108.

[109]

Pop, M. A.; Zaharia, S. M.; Chicos, L. A.; Lancea, C.; Stamate, V. M.; Buican, G. R.; Pascariu, I. S. Effect of the infill patterns on the mechanical properties of the carbon fiber 3D printed parts. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1235, 012006.

[110]

Fischer, D.; Eßbach, C.; Schönherr, R.; Dietrich, D.; Nickel, D. Improving inner structure and properties of additive manufactured amorphous plastic parts: The effects of extrusion nozzle diameter and layer height. Addit. Manuf. 2022, 51, 102596.

[111]

Vidakis, N.; Petousis, M.; Kechagias, J. D. A comprehensive investigation of the 3D printing parameters’ effects on the mechanical response of polycarbonate in fused filament fabrication. Progr. Addit. Manuf. 2022, 7, 713–722.

[112]

Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

[113]

Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 2011, 52, 5–25.

[114]

Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

[115]

Yang, L.; Chen, Y. H.; Wang, M.; Shi, S. H.; Jing, J. J. Fused deposition modeling 3D printing of novel poly(vinyl alcohol)/graphene nanocomposite with enhanced mechanical and electromagnetic interference shielding properties. Ind. Eng. Chem. Res. 2020, 59, 8066–8077.

[116]

Wang, Z. Y.; Yang, W. Z.; Liu, R.; Zhang, X. L.; Nie, H. Y.; Liu, Y. Highly stretchable graphene/polydimethylsiloxane composite lattices with tailored structure for strain-tolerant EMI shielding performance. Compos. Sci. Technol. 2021, 206, 108652.

[117]

Wajahat, M.; Kim, J. H.; Ahn, J.; Lee, S.; Bae, J.; Pyo, J.; Seol, S. K. 3D printing of Fe3O4 functionalized graphene-polymer (FGP) composite microarchitectures. Carbon 2020, 167, 278–284.

[118]

Jing, J. J.; Xiong, Y.; Shi, S. H.; Pei, H. R.; Chen, Y. H.; Lambin, P. Facile fabrication of lightweight porous FDM-printed polyethylene/graphene nanocomposites with enhanced interfacial strength for electromagnetic interference shielding. Compos. Sci. Technol. 2021, 207, 108732.

[119]

Lee, K. P. M.; Baum, T.; Shanks, R.; Daver, F. Graphene-polyamide-6 composite for additive manufacture of multifunctional electromagnetic interference shielding components. J. Appl. Polym. Sci. 2021, 138, 49909.

[120]

Lee, K. P. M.; Baum, T.; Shanks, R.; Daver, F. Electromagnetic interference shielding of 3D-printed graphene-polyamide-6 composites with 3D-printed morphology. Addit. Manuf. 2021, 43, 102020.

[121]

Shi, S. H.; Peng, Z. L.; Jing, J. J.; Yang, L.; Chen, Y. H.; Kotsilkova, R.; Ivanov, E. Preparation of highly efficient electromagnetic interference shielding polylactic acid/graphene nanocomposites for fused deposition modeling three-dimensional printing. Ind. Eng. Chem. Res. 2020, 59, 15565–15575.

[122]

Li, Y. C.; Huang, X. R.; Zeng, L. J.; Li, R. F.; Tian, H. F.; Fu, X. W.; Wang, Y.; Zhong, W. H. A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J. Mater. Sci., 2019, 54, 1036–1076.

[123]

Zhu, Y.; Bakis, C. E.; Adair, J. H. Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites. Carbon 2012, 50, 1316–1331.

[124]

Zhang, R. W.; Moon, K. S.; Lin, W.; Agar, J. C.; Wong, C. P. A simple, low-cost approach to prepare flexible highly conductive polymer composites by in situ reduction of silver carboxylate for flexible electronic applications. Compos. Sci. Technol. 2011, 71, 528–534.

[125]

Xu, D. W.; Chen, W. H.; Liu, P. J. Enhanced electromagnetic interference shielding and mechanical properties of segregated polymer/carbon nanotube composite via selective microwave sintering. Compos. Sci. Technol. 2020, 199, 108355.

[126]

Feng, D.; Wang, Q. Q.; Xu, D. W.; Liu, P. J. Microwave assisted sinter molding of polyetherimide/carbon nanotubes composites with segregated structure for high-performance EMI shielding applications. Compos. Sci. Technol. 2019, 182, 107753.

[127]

Sun, X.; He, J. P.; Li, G. X.; Tang, J.; Guo, Y. X.; Xue, H. R. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J. Mater. Chem. C 2013, 1, 765–777.

[128]

Zhan, Y. H.; Wang, J.; Zhang, K. Y.; Li, Y. C.; Meng, Y. Y.; Yan, N.; Wei, W. K.; Peng, F. B.; Xia, H. S. Fabrication of a flexible electromagnetic interference shielding Fe3O4@reduced graphene oxide/natural rubber composite with segregated network. Chem. Eng. J. 2018, 344, 184–193.

[129]

Fei, Y.; Liang, M.; Chen, Y.; Zou, H. W. Sandwich-like magnetic graphene papers prepared with MOF-derived Fe3O4-C for absorption-dominated electromagnetic interference shielding. Ind. Eng. Chem. Res. 2020, 59, 154–165.

[130]

Zhu, S. M.; Guo, J. J.; Dong, J. P.; Cui, Z. W.; Lu, T.; Zhu, C. L.; Zhang, D.; Ma, J. Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrason. Sonochem. 2013, 20, 872–880.

[131]

He, C. N.; Wu, S.; Zhao, N. Q.; Shi, C. S.; Liu, E. Z.; Li, J. J. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano 2013, 7, 4459–4469.

[132]

Liu, Y. J.; Song, D.; Wu, C. X.; Leng, J. S. EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe. Compos. Part B Eng. 2014, 63, 34–40.

[133]

Tang, X.; Jia, R. Y.; Zhai, T.; Xia, H. Hierarchical Fe3O4@Fe2O3 core–shell nanorod arrays as high-performance anodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 27518–27525.

[134]

Li, H. C.; Yang, S. Q.; Hui, D.; Hong, R. Y. Progress in magnetic Fe3O4 nanomaterials in magnetic resonance imaging. Nanotechnol. Rev. 2020, 9, 1265–1283.

[135]

Liu, X. M.; Huang, Z. D.; Oh, S. W.; Zhang, B.; Ma, P. C.; Yuen, M. M. F.; Kim, J. K. Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Compos. Sci. Technol. 2012, 72, 121–144.

[136]

Soni, S. K.; Thomas, B.; Kar, V. R. A comprehensive review on CNTs and CNT-reinforced composites: Syntheses, characteristics and applications. Mater. Today Commun. 2020, 25, 101546.

[137]

Ma, C. P.; Siddiqui, N. A.; Marom, G.; Kim, J. K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367.

[138]

Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Progr. Polym. Sci. 2010, 35, 357–401.

[139]

Chizari, K.; Arjmand, M.; Liu, Z.; Sundararaj, U.; Therriault, D. Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater. Today Commun. 2017, 11, 112–118.

[140]

Wang, Y.; Fan, Z. W.; Zhang, H.; Guo, J.; Yan, D. X.; Wang, S. F.; Dai, K.; Li, Z. M. 3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance. Mater. Des. 2021, 197, 109222.

[141]

Verma, P.; Bansala, T.; Chauhan, S. S.; Kumar, D.; Deveci, S.; Kumar, S. Electromagnetic interference shielding performance of carbon nanostructure reinforced, 3D printed polymer composites. J. Mater. Sci. 2021, 56, 11769–11788.

[142]

Lei, D. D.; Liu, N. S.; Su, T. Y.; Zhang, Q. X.; Wang, L. X.; Ren, Z. Q.; Gao, Y. H. Roles of MXene in pressure sensing: Preparation, composite structure design, and mechanism. Adv. Mater. 2022, 2110608.

[143]

Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M. Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127.

[144]

Shuck, C. E.; Sarycheva, A.; Anayee, M.; Levitt, A.; Zhu, Y. Z.; Uzun, S.; Balitskiy, V.; Zahorodna, V.; Gogotsi, O.; Gogotsi, Y. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 2020, 22, 1901241.

[145]

Ma, C.; Ma, M. G.; Si, C. L.; Ji, X. X.; Wan, P. B. Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 2021, 31, 2009524.

[146]

Yang, J.; Bao, W. Z.; Jaumaux, P.; Zhang, S. T.; Wang, C. Y.; Wang, G. X. MXene-based composites: Synthesis and applications in rechargeable batteries and supercapacitors. Adv. Mater. Interfaces 2019, 6, 1802004.

[147]

Gong, K. L.; Zhou, K. Q.; Qian, X. D.; Shi, C. L.; Yu, B. MXene as emerging nanofillers for high-performance polymer composites: A review. Compos. Part B Eng. 2021, 217, 108867.

[148]

Riazi, H.; Taghizadeh, G.; Soroush, M. MXene-based nanocomposite sensors. ACS Omega 2021, 6, 11103–11112.

[149]

Wang, Y. X.; Yue, Y.; Cheng, F.; Cheng, Y. F.; Ge, B. H.; Liu, N. S.; Gao, Y. H. Ti3C2Tx MXene-based flexible piezoresistive physical sensors. ACS Nano 2022, 16, 1734–1758.

[150]

Iravani, S.; Varma, R. S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021, 2, 2906–2917.

[151]

Liu, H. J.; Dong, B. Recent advances and prospects of MXene-based materials for electrocatalysis and energy storage. Mater. Today Phys. 2021, 20, 100469.

[152]

Hong, S. Y.; Sun, Y.; Lee, J.; Ma, Y. F.; Wang, M.; Nam, J. D.; Suhr, J. 3D printing of free-standing Ti3C2Tx/PEO architecture for electromagnetic interference shielding. Polymer 2021, 236, 124312.

[153]

Shi, H.; Liu, C. C.; Jiang, Q. L.; Xu, J. K. Effective approaches to improve the electrical conductivity of PEDOT:PSS: A review. Adv. Electr. Mater. 2015, 1, 1500017.

[154]

Fan, Z.; Ouyang, J. Y. Thermoelectric properties of PEDOT:PSS. Adv. Electr. Mater. 2019, 5, 1800769.

[155]

Xia, Y. J.; Dai, S. Y. Review on applications of PEDOTs and PEDOT:PSS in perovskite solar cells. J. Mater. Sci. Mater. Electr. 2021, 32, 12746–12757.

[156]

Manjakkal, L.; Pullanchiyodan, A.; Yogeswaran, N.; Hosseini, E. S.; Dahiya, R. A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte. Adv. Mater. 2020, 32, 1907254.

[157]

Xu, S. D.; Hong, M.; Shi, X. L.; Wang, Y.; Ge, L.; Bai, Y.; Wang, L. Z.; Dargusch, M.; Zou, J.; Chen, Z. G. High-performance PEDOT:PSS flexible thermoelectric materials and their devices by triple post-treatments. Chem. Mater. 2019, 31, 5238–5244.

[158]

Salar-Garcia, M. J.; Montilla, F.; Quijada, C.; Morallon, E.; Ieropoulos, I. Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes. Appl. Energy 2020, 278, 115528.

[159]

Kayser, L. V.; Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, 1806133.

[160]

Liu, J.; Mckeon, L.; Garcia, J.; Pinilla, S.; Barwich, S.; Möbius, M.; Stamenov, P.; Coleman, J. N.; Nicolosi, V. Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 2022, 34, 2106253.

[161]

Yang, Y.; Deng, H.; Fu, Q. Recent progress on PEDOT:PSS based polymer blends and composites for flexible electronics and thermoelectric devices. Mater. Chem. Front. 2020, 4, 3130–3152.

[162]

Chen, J. W.; Li, H.; Yu, Q. Z.; Hu, Y. M.; Cui, X. H.; Zhu, Y. T.; Jiang, W. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Compos. Sci. Technol. 2018, 168, 388–396.

[163]

Luo, X. L.; Yang, G. D.; Schubert, D. W. Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: Synergistic effect and tunable conductivity anisotropy. Adv. Compos. Hybr. Mater. 2022, 5, 250–262.

[164]

Shi, S. H.; Peng, Z. L.; Jing, J. J.; Yang, L.; Chen, Y. H. 3D printing of delicately controllable cellular nanocomposites based on polylactic acid incorporating graphene/carbon nanotube hybrids for efficient electromagnetic interference shielding. ACS Sustain. Chem. Eng. 2020, 8, 7962–7972.

[165]

Ecco, L. G.; Dul, S.; Schmitz, D. P.; Barra, G. M. D. O.; Soares, B. G.; Fambri, L.; Pegoretti, A. Rapid prototyping of efficient electromagnetic interference shielding polymer composites via fused deposition modeling. Appl. Sci. 2019, 9, 37.

[166]

Schmitz, D. P.; Ecco, L. G.; Dul, S.; Pereira, E. C. L.; Soares, B. G.; Barra, G. M. O.; Pegoretti, A. Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling. Mater. Today Commun. 2018, 15, 70–80.

[167]

Wang, Z. Y.; Ren, J.; Liu, R.; Sun, X. H.; Huang, D. D.; Xu, W.; Jiang, J.; Ma, K. X.; Liu, Y. Three dimensional core–shell structured liquid metal/elastomer composite via coaxial direct ink writing for electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105957.

[168]

Lee, J. W. 3D nanoprinting technologies for tissue engineering applications. J. Nanomater. 2015, 2015, 213521.

[169]

Pattison, T. G.; Wang, S.; Miller, R. D.; Liu, G. Y.; Qiao, G. G. 3D nanoprinting via spatially controlled assembly and polymerization. Nat. Commun. 2022, 13, 1941.

Nano Research
Pages 1-17
Cite this article:
Jalali A, Zhang R, Rahmati R, et al. Recent progress and perspective in additive manufacturing of EMI shielding functional polymer nanocomposites. Nano Research, 2023, 16(1): 1-17. https://doi.org/10.1007/s12274-022-5053-4
Topics:
Part of a topical collection:

4637

Views

40

Crossref

26

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 01 July 2022
Revised: 28 August 2022
Accepted: 14 September 2022
Published: 14 November 2022
© Tsinghua University Press 2022
Return