AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Triboelectric nanogenerators with a constant inherent capacitance design

Lanyue Gan1Fan Xia2Panpan Zhang3Xijun Jiang1Yuxuan Liu1Simiao Niu4Youfan Hu1,2( )
Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411102, China
Key Laboratory for the Physics and Chemistry of Nanodevices, Center for Carbon-Based Electronics, Academy for Advanced Interdisciplinary Studies, School of Electronics, Peking University, Beijing 100871, China
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
Show Author Information

Graphical Abstract

A triboelectric nanogenerator with a constant inherent capacitance (CIC-TENG) is proposed and a mathematical model is established to provide analytical expressions of key output parameters of the device.

Abstract

Triboelectric nanogenerators (TENGs) utilize the phenomena of contact electrification and electrostatic induction to harvest mechanical energy from the environment. A good match between the motion frequency and the circuit characteristic frequency is critical for the effective power generation of a TENG. However, most TENGs have a time-dependent inherent capacitance (TIC-TENG), which hinders an optimal design for efficient energy conversion. Here, we propose a novel structure of a TENG with a constant inherent capacitance (CIC-TENG) and a mathematical model is established to provide analytical expressions of key output parameters of the device, which gives numerical simulation results that are in good agreement with the experimentally obtained results. Figures of merit and an optimization strategy are also given as guidelines for the optimization of material selection, geometry design, etc. Furthermore, a disk-formed CIC-TENG (DCIC-TENG) with polarity-switched triboelectric pairs is constructed to harvest unidirectional mechanical energy continuously, achieving an output power density of 55 mW/m2. The effects of the motion frequency, the number of electrodes and triboelectric pairs on the charge transfer efficiency of the DCIC-TENG are assessed and a preferred design strategy is given. Finally, the CIC-TENG demonstrates approximately two-fold advantages in power transfer efficiency over the TIC-TENG, and a DCIC-TENG-based self-powered anemometer was fabricated to measure wind speed in real time.

Electronic Supplementary Material

Video
12274_2022_5054_MOESM1_ESM.mp4
Download File(s)
12274_2022_5054_MOESM2_ESM.pdf (577.6 KB)

References

[1]

Pan, S. H.; Zhang, Z. N. Fundamental theories and basic principles of triboelectric effect: A review. Friction 2019, 7, 2–17.

[2]

Lowell, J.; Rose–Innes, A. C. Contact electrification. Adv. Phys. 1980, 29, 947–1023.

[3]

Persson, B. N. J. Theory of rubber friction and contact mechanics. J. Chem. Phys. 2001, 115, 3840–3861.

[4]

Wu, C. S.; Wang, A. C.; Ding, W. B.; Guo, H. Y.; Wang, Z. L. Triboelectric nanogenerator: A foundation of the energy for the new era. Adv. Energy Mater. 2019, 9, 1802906.

[5]

Wang, Y.; Yang, Y.; Wang, Z. L. Triboelectric nanogenerators as flexible power sources. npj Flex. Electron. 2017, 1, 10.

[6]

Ryu, H.; Park, H. M.; Kim, M. K.; Kim, B.; Myoung, H. S.; Kim, T. Y.; Yoon, H. J.; Kwak, S. S.; Kim, J.; Hwang, T. H. et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 2021, 12, 4374.

[7]

Alagumalai, A.; Shou, W.; Mahian, O.; Aghbashlo, M.; Tabatabaei, M.; Wongwises, S.; Liu, Y.; Zhan, J.; Torralba, A.; Chen, J. et al. Self-powered sensing systems with learning capability. Joule 2022, 6, 1475–1500.

[8]

Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

[9]

Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.

[10]

Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2021, 171, 112714.

[11]

Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.

[12]

Zu, L. L.; Liu, D.; Shao, J. J.; Liu, Y.; Shu, S.; Li, C. Y.; Shi, X.; Chen, B. D.; Wang, Z. L. A self-powered early warning glove with integrated elastic-arched triboelectric nanogenerator and flexible printed circuit for real-time safety protection. Adv. Mater. Technol. 2022, 7, 2100787.

[13]

Jin, T.; Sun, Z. D.; Li, L.; Zhang, Q.; Zhu, M. L.; Zhang, Z. X.; Yuan, G. J.; Chen, T.; Tian, Y. Z.; Hou, X. Y. et al. Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nat. Commun. 2020, 11, 5381.

[14]

Yu, J. R.; Gao, G. Y.; Huang, J. R.; Yang, X. X.; Han, J.; Zhang, H.; Chen, Y. H.; Zhao, C. L.; Sun, Q. J.; Wang, Z. L. Contact-electrification-activated artificial afferents at femtojoule energy. Nat. Commun. 2021, 12, 1581.

[15]

Kaponig, M.; Mölleken, A.; Nienhaus, H.; Möller, R. Dynamics of contact electrification. Sci. Adv. 2021, 7, eabg7595.

[16]

Cui, X.; Zhang, Y. M.; Hu, G. W.; Zhang, L.; Zhang, Y. Dynamical charge transfer model for high surface charge density triboelectric nanogenerators. Nano Energy 2020, 70, 104513.

[17]

Niu, S. M.; Wang, S. H.; Lin, L.; Liu, Y.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 2013, 6, 3576–3583.

[18]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

[19]

Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340.

[20]

Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

[21]

Niu, S. M.; Liu, Y.; Chen, X. Y.; Wang, S. H.; Zhou, Y. S.; Lin, L.; Xie, Y. N.; Wang, Z. L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774.

[22]

Tang, Q.; Guo, H. Y.; Yan, P.; Hu, C. G. Recent progresses on paper-based triboelectric nanogenerator for portable self-powered sensing systems. EcoMat. 2020, 2, e12060.

[23]

Zhao, K.; Sun, W. R.; Zhang, X. T.; Meng, J. K.; Zhong, M.; Qiang, L.; Liu, M. J.; Gu, B. N.; Chung, C. C.; Liu, M. C. et al. High-performance and long-cycle life of triboelectric nanogenerator using PVC/MoS2 composite membranes for wind energy scavenging application. Nano Energy 2022, 91, 106649.

[24]

Chen, A. H.; Zhang, C.; Zhu, G.; Wang, Z. L. Polymer materials for high-performance triboelectric nanogenerators. Adv. Sci. 2020, 7, 2000186.

[25]

Seung, W.; Gupta, M. K.; Lee, K. Y.; Shin, K. S.; Lee, J. H.; Kim, T. Y.; Kim, S.; Lin, J. J.; Kim, J. H.; Kim, S. W. Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 2015, 9, 3501–3509.

[26]

Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.

[27]

Liu, W. L.; Wang, Z.; Wang, G.; Zeng, Q. X.; He, W. C.; Liu, L. Y.; Wang, X.; Xi, Y.; Guo, H. Y.; Hu, C. G. et al. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nat. Commun. 2020, 11, 1883.

[28]

Wang, Z.; Liu, W. L.; He, W. C.; Guo, H. Y.; Long, L.; Xi, Y.; Wang, X.; Liu, A. P.; Hu, C. G. Ultrahigh electricity generation from low-frequency mechanical energy by efficient energy management. Joule 2021, 5, 441–455.

[29]

Karami, A.; Galayko, D.; Basset, P. Series-parallel charge pump conditioning circuits for electrostatic kinetic energy harvesting. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 227–240.

[30]

Peng, J.; Kang, S. D.; Snyder, G. J. Optimization principles and the figure of merit for triboelectric generators. Sci. Adv. 2017, 3, eaap8576.

[31]

Zargari, S.; Rezania, A.; Koozehkanani, Z. D.; Veladi, H.; Sobhi, J.; Rosendahl, L. Effect of the inherent capacitance optimization on the output performance of triboelectric nanogenerators. Nano Energy 2022, 92, 106740.

[32]

Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.

[33]

Lin, L.; Wang, S. H.; Niu, S. M.; Liu, C.; Xie, Y. N.; Wang, Z. L. Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor. ACS Appl. Mater. Interfaces 2014, 6, 3031–3038.

[34]

Xie, Y. N.; Wang, S. H.; Niu, S. M.; Lin, L.; Jing, Q. S.; Yang, J.; Wu, Z. Y.; Wang, Z. L. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv. Mater. 2014, 26, 6599–6607.

[35]

Wang, S. H.; Niu, S. M.; Yang, J.; Lin, L.; Wang, Z. L. Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS Nano 2014, 8, 12004–12013.

[36]

Zi, Y. L.; Niu, S. M.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z. L. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators. Nat. Commun. 2015, 6, 8376.

Nano Research
Pages 4077-4084
Cite this article:
Gan L, Xia F, Zhang P, et al. Triboelectric nanogenerators with a constant inherent capacitance design. Nano Research, 2023, 16(3): 4077-4084. https://doi.org/10.1007/s12274-022-5054-3
Topics:
Part of a topical collection:

887

Views

2

Crossref

2

Web of Science

2

Scopus

0

CSCD

Altmetrics

Received: 07 July 2022
Revised: 06 September 2022
Accepted: 14 September 2022
Published: 26 October 2022
© Tsinghua University Press 2022
Return