Graphical Abstract

Rational design and synthesis of bifunctional oxygen electrocatalysts with high activity and stability are key challenges in the development of rechargeable Zn-air batteries (ZABs). In this paper, tungsten carbide (WC) and Co7Fe3 embedded in N,P co-doped hierarchical carbon (WC/Co7Fe3-NPHC) was prepared by using zeolite imidazolate frameworks as precursor. Density functional theory demonstrates that the mutual adjustment among the WC, Co7Fe3, and N,P co-doped carbon at the three-phase heterojunction interface makes the catalyst possess moderate adsorption strength, and greatly improves the conductivity and electron transfer rate of the catalyst. As a result, the WC/Co7Fe3-NPHC exhibits a low overall oxygen redox potential difference of 0.72 V, while the ZAB assembled by WC/Co7Fe3-NPHC as an air cathode exhibits ultra-long cycle stability of over 550 h. Futhermore, WC/Co7Fe3-NPHC can keep good charge and discharge stability at different bending angles when applied to flexible solid ZAB.
Gao, D. F.; Li, H. F.; Wei, P. F.; Wang, Y.; Wang, G. X.; Bao, X. H. Electrochemical synthesis of catalytic materials for energy catalysis. Chin. J. Catal. 2022, 43, 1001–1016.
Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy Environ. Sci. 2014, 7, 14–18.
Guo, Y. B.; Chen, Y. N.; Cui, H. J.; Zhou, Z. Bifunctional electrocatalysts for rechargeable Zn-air batteries. Chin. J. Catal. 2019, 40, 1298–1310.
Wu, M. J.; Zhang, G. X.; Wu, M. H.; Prakash, J.; Sun, S. H. Rational design of multifunctional air electrodes for rechargeable Zn-air batteries: Recent progress and future perspectives. Energy Stor. Mater. 2019, 21, 253–286.
Zhu, B. J.; Liang, Z. B.; Xia, D. G.; Zou, R. Q. Metal-organic frameworks and their derivatives for metal-air batteries. Energy Stor. Mater. 2019, 23, 757–771.
Wu, Z. H.; Yu, Y. R.; Zhang, G. K.; Zhang, Y. S.; Guo, R. X.; Li, L.; Zhao, Y. G.; Wang, Z.; Shen, Y. L.; Shao, G. S.
Lei, H.; Yang, S. J.; Wan, Q. X.; Ma, L.; Javed, M. S.; Tan, S. Z.; Wang, Z. L.; Mai, W. Coordination and interface engineering to boost catalytic property of two-dimensional ZIFs for wearable Zn-air batteries. J. Energy Chem. 2022, 68, 78–86.
Chen, D. F.; Pan, L.; Pei, P. C.; Song, X.; Ren, P.; Zhang, L. Cobalt-based oxygen electrocatalysts for zinc-air batteries: Recent progress, challenges, and perspectives. Nano Res. 2022, 15, 5038–5063.
Zhang, Z. Y.; Tan, Y. Y.; Zeng, T.; Yu, L. Y.; Chen, R.; Cheng, N. C.; Mu, S. C.; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. 2020, 14, 2353–2362.
Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.
Kwon, T.; Kim, T.; Son, Y.; Lee, K. Dopants in the design of noble metal nanoparticle electrocatalysts and their effect on surface energy and coordination chemistry at the nanocrystal surface. Adv. Energy Mater. 2021, 11, 2100265.
Wang, C.; Van Der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S. H.; Daimon, H.; Wang, G. F.; Greeley, J.; Pearson, J. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 2011, 11, 919–926.
Spöri, C.; Briois, P.; Nong, H. N.; Reier, T.; Billard, A.; Kühl, S.; Teschner, D.; Strasser, P. Experimental activity descriptors for iridium-based catalysts for the electrochemical oxygen evolution reaction (OER). ACS Catal. 2019, 9, 6653–6663.
Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.
Ghosh, S.; Basu, R. N. Multifunctional nanostructured electrocatalysts for energy conversion and storage: Current status and perspectives. Nanoscale 2018, 10, 11241–11280.
Chen, Y. P.; Lin, S. Y.; Sun, R. M.; Wang, A. J.; Zhang, L.; Ma, X. H.; Feng, J. J. FeCo/FeCoP encapsulated in N,Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries. J. Colloid Interface Sci. 2022, 605, 451–462.
Hu, C. G.; Dai, L. M. Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution. Adv. Mater. 2017, 29, 1604942.
Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc-air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.
Han, X. P.; Ling, X. F.; Wang, Y.; Ma, T. Y.; Zhong, C.; Hu, W. B.; Deng, Y. D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem., Int. Ed. 2019, 58, 5359–5364.
Li, Y. B.; Tan, X.; Tan, H.; Ren, H. J.; Chen, S.; Yang, W. F.; Smith, S. C.; Zhao, C. Phosphine vapor-assisted construction of heterostructured Ni2P/NiTe2 catalysts for efficient hydrogen evolution. Energy Environ. Sci. 2020, 13, 1799–1807.
Bai, J. M.; Meng, T.; Guo, D. L.; Wang, S. G.; Mao, B. G.; Cao, M. H. Co9S8@MoS2 core–shell heterostructures as trifunctional electrocatalysts for overall water splitting and Zn-air batteries. ACS Appl. Mater. Interfaces 2018, 10, 1678–1689.
Qian, Q. Z.; Li, Y. P.; Liu, Y.; Guo, Y. M.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Hierarchical multi-component nanosheet array electrode with abundant NiCo/MoNi4 heterostructure interfaces enables superior bifunctionality towards hydrazine oxidation assisted energy-saving hydrogen generation. Chem. Eng. J. 2021, 414, 128818.
Diao, J. X.; Qiu, Y.; Liu, S. Q.; Wang, W. T.; Chen, K.; Li, H. L.; Yuan, W. Y.; Qu, Y. T.; Guo, X. H. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv. Mater. 2020, 32, 1905679.
Regmi, Y. N.; Waetzig, G. R.; Duffee, K. D.; Schmuecker, S. M.; Thode, J. M.; Leonard, B. M. Carbides of group IVA, VA and VIA transition metals as alternative HER and ORR catalysts and support materials. J. Mater. Chem. A 2015, 3, 10085–10091.
Song, L. H.; Zhang, J.; Sarkar, S.; Zhao, C. F.; Wang, Z. W.; Huang, C. Y.; Yan, L. M.; Zhao, Y. F. Interface engineering of FeCo-Co structure as bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries via alloying degree control strategy. Chem. Eng. J. 2022, 433, 133686.
Samanta, A.; Raj, C. R. Catalyst support in oxygen electrocatalysis: A case study with CoFe alloy electrocatalyst. J. Phys. Chem. C 2018, 122, 15843–15852.
Su, W.; Yan, P. P.; Wei, X. F.; Zhu, X. W.; Zhou, Q. Y. Facile one-step synthesis of nitrogen-doped carbon sheets supported tungsten carbide nanoparticles electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 33430–33439.
Xu, L.; Wu, S. Q.; Deng, D. J.; Wang, C.; Qian, J. C.; Lu, G. F.; Li, H. N. Fabricating highly active and stable tungsten carbide electrocatalyst for rechargeable zinc-air batteries: An approach of dual metal Co-adjusted the electronic structure. J. Alloys Compd. 2021, 868, 159236.
Zhu, H.; Sun, Z. N.; Chen, M. L.; Cao, H. H.; Li, K.; Cai, Y. Z.; Wang, F. H. Highly porous composite based on tungsten carbide and N-doped carbon aerogels for electrocatalyzing oxygen reduction reaction in acidic and alkaline media. Electrochim. Acta 2017, 236, 154–160.
Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc-air batteries. Nano Res. 2021, 14, 868–878.
Xiong, X.; Jiang, R.; Deng, B. W.; Yang, J.; Wang, D. H. Bionic structural design and electrochemical manufacture of WC/N-doped carbon hybrids as efficient ORR catalyst. J. Electrochem. Soc. 2020, 167, 064502.
Liu, T. T.; Li, M.; Bo, X. J.; Zhou, M. Designing transition metal alloy nanoparticles embedded hierarchically porous carbon nanosheets as high-efficiency electrocatalysts toward full water splitting. J. Colloid Interface Sci. 2019, 537, 280–294.
Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Res. 2020, 13, 1090–1099.
Riyajuddin, S.; Azmi, K.; Pahuja, M.; Kumar, S.; Maruyama, T.; Bera, C.; Ghosh, K. Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano 2021, 15, 5586–5599.
Xu, Z. X.; Zhuang, X. D.; Yang, C. Q.; Cao, J.; Yao, Z. Q.; Tang, Y. P.; Jiang, J. Z.; Wu, D. Q.; Feng, X. L. Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets. Adv. Mater. 2016, 28, 1981–1987.
Xie, W. F.; Li, J. M.; Song, Y. K.; Li, S. J.; Li, J. B.; Shao, M. F. Hierarchical carbon microtube@nanotube core–shell structure for high-performance oxygen electrocatalysis and Zn-air battery. Nano-Micro Lett. 2020, 12, 97.
Wang, Y. N.; Zhou, J.; He, Y.; Liu, Y. F.; Xu, C. L. Highly performed nitrogen-doped porous carbon electrocatalyst for oxygen reduction reaction prepared by a simple and slight regulation in hydrolyzing process of ZIF-8. J. Solid State Chem. 2021, 302, 122415.
Lu, X. F.; Fang, Y. J.; Luan, D. Y.; Lou, X. W. D. Metal-organic frameworks derived functional materials for electrochemical energy storage and conversion: A mini review. Nano Lett. 2021, 21, 1555–1565.
Zhao, X. H.; Pattengale, B.; Fan, D. H.; Zou, Z. H.; Zhao, Y. Q.; Du, J.; Huang, J. F.; Xu, C. L. Mixed-node metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. ACS Energy Lett. 2018, 3, 2520–2526.
Qiu, T. J.; Liang, Z. B.; Guo, W. H.; Tabassum, H.; Gao, S.; Zou, R. Q. Metal-organic framework-based materials for energy conversion and storage. ACS Energy Lett. 2020, 5, 520–532.
Zhao, C. X.; Liu, J. N.; Wang, J.; Wang, C. D.; Guo, X.; Li, X. Y.; Chen, X.; Song, L.; Li, B. Q.; Zhang, Q. A clicking confinement strategy to fabricate transition metal single-atom sites for bifunctional oxygen electrocatalysis. Sci. Adv. 2022, 8, eabn5091.
Balamurugan, J.; Nguyen, T. T.; Kim, D. H.; Kim, N. H.; Lee, J. H. 3D nickel molybdenum oxyselenide (Ni1−xMoxOSe) nanoarchitectures as advanced multifunctional catalyst for Zn-air batteries and water splitting. Appl. Catal. B:Environ. 2021, 286, 119909.
Qin, Q.; Jang, H.; Chen, L. L.; Nam, G.; Liu, X. E.; Cho, J. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions. Adv. Energy Mater. 2018, 8, 1801478.
Lu, X. F.; Chen, Y.; Wang, S. B.; Gao, S. Y.; Lou, X. W. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 2019, 31, 1902339.
Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.
Yu, J. H.; Cui, Z. X.; Li, X.; Chen, D.; Ji, J. W.; Zhang, Q.; Sui, J.; Yu, L. Y.; Dong, L. F. Facile fabrication of ZIF-derived graphene-based 2D Zn/Co oxide hybrid for high-performance supercapacitors. J. Energy Storage 2020, 27, 101165.
Zhang, J.; Shi, Y.; Ding, Y.; Peng, L. L.; Zhang, W. K.; Yu, G. H. A conductive molecular framework derived Li2S/N,P-codoped carbon cathode for advanced lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602876.
Zheng, Y.; Jiao, Y.; Li, L. H.; Xing, T.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 2014, 8, 5290–5296.
Wang, Q. T.; Cui, K.; Li, J.; Wu, Y. X.; Yang, Y. X.; Zhou, X. Z.; Ma, G. F.; Yang, Z. W.; Lei, Z. Q.; Ren, S. F. Phosphorus-doped CoTe2/C nanoparticles create new Co-P active sites to promote the hydrogen evolution reaction. Nanoscale 2020, 12, 9171–9177.
Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2019, 256, 117893.
Zhang, M.; Zhang, J. T.; Ran, S. Y.; Qiu, L. X.; Sun, W.; Yu, Y.; Chen, J. S.; Zhu, Z. H. A robust bifunctional catalyst for rechargeable Zn-air batteries: Ultrathin NiFe-LDH nanowalls vertically anchored on soybean-derived Fe-N-C matrix. Nano Res. 2021, 14, 1175–1186.
Lu, X. F.; Zhang, S. L.; Shangguan, E. B.; Zhang, P.; Gao, S. Y.; Lou, X. W. Nitrogen-doped cobalt pyrite yolk–shell hollow spheres for long-life rechargeable Zn-air batteries. Adv. Sci. 2020, 7, 2001178.
Zhou, C. H.; Chen, X.; Liu, S.; Han, Y.; Meng, H. B.; Jiang, Q. Y.; Zhao, S. M.; Wei, F.; Sun, J.; Tan, T. et al. Superdurable bifunctional oxygen electrocatalyst for high-performance zinc-air batteries. J. Am. Chem. Soc. 2022, 144, 2694–2704.
He, Y. T.; Yang, X. X.; Li, Y. S.; Liu, L. T.; Guo, S. W.; Shu, C. Y.; Liu, F.; Liu, Y. N.; Tan, Q.; Wu, G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022, 12, 1216–1227.
Qiang, F. Q.; Feng, J. G.; Wang, H. L.; Yu, J. H.; Shi, J.; Huang, M. H.; Shi, Z. C.; Liu, S.; Li, P.; Dong, L. F. Oxygen engineering enables N-doped porous carbon nanofibers as oxygen reduction/evolution reaction electrocatalysts for flexible zinc-air batteries. ACS Catal. 2022, 12, 4002–4015.
Wagh, N. K.; Kim, D. H.; Kim, S. H.; Shinde, S. S.; Lee, J. H. Heuristic iron-cobalt-mediated robust pH-universal oxygen bifunctional lusters for reversible aqueous and flexible solid-state Zn-air cells. ACS Nano 2021, 15, 14683–14696.