AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Single-atom nanozymes: From bench to bedside

Chanyuan Jin1Sanjun Fan2Zechao Zhuang3( )Yongsheng Zhou4 ( )
Second Dental Center, Peking University School and Hospital of Stomatology, Beijing 100101, China
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
Department of Chemistry, Tsinghua University, Beijing 100084, China
Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
Show Author Information

Graphical Abstract

Schematic illustrates the single-atom nanozymes for biomedical applications.

Abstract

Single-atom nanozymes (SANs) are the new emerging catalytic nanomaterials with enzyme-mimetic activities, which have many extraordinary merits, such as low-cost preparation, maximum atom utilization, ideal catalytic activity, and optimized selectivity. With these advantages, SANs have received extensive research attention in the fields of chemistry, energy conversion, and environmental purification. Recently, a growing number of studies have shown the great promise of SANs in biological applications. In this article, we present the most recent developments of SANs in anti-infective treatment, cancer diagnosis and therapy, biosensing, and antioxidative therapy. This text is expected to better guide the readers to understand the current state and future clinical possibilities of SANs in medical applications.

References

[1]

Rehm, F. B. H.; Chen, S. X.; Rehm, B. H. A. Enzyme engineering for in situ immobilization. Molecules 2016, 21, 1370.

[2]

Katsimpouras, C.; Stephanopoulos, G. Enzymes in biotechnology: Critical platform technologies for bioprocess development. Curr. Opin. Biotechnol. 2021, 69, 91–102.

[3]
Sánchez-deAlcázar, D.; Liutkus, M.; Cortajarena, A. L. Immobilization of enzymes in protein films. In Immobilization of Enzymes and Cells: Methods and Protocols, 4th ed.; Guisan, J. M.; Bolivar, J. M.; López-Gallego, F.; Rocha-Martín, J., Eds.; Springer: New York, 2020; pp 211–226.
[4]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[5]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[6]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem. 2019, 6, 3570–3589.

[7]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[8]

Zandieh, M.; Liu, J. W. Nanozyme catalytic turnover and self-limited reactions. ACS Nano 2021, 15, 15645–15655.

[9]

Jiang, D. W.; Ni, D. L.; Rosenkrans, Z. T.; Huang, P.; Yan, X. Y.; Cai, W. B. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704.

[10]

Manea, F.; Houillon, F. B.; Pasquato, L.; Scrimin, P. Nanozymes: Gold-nanoparticle-based transphosphorylation catalysts. Angew. Chem., Int. Ed. 2004, 43, 6165–6169.

[11]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[12]

Zhang, Y. N.; Jin, Y. L.; Cui, H. X.; Yan, X. Y.; Fan, K. L. Nanozyme-based catalytic theranostics. RSC Adv. 2020, 10, 10–20.

[13]

Mahmudunnabi, R. G.; Farhana, F. Z.; Kashaninejad, N.; Firoz, S. H.; Shim, Y. B.; Shiddiky, M. J. A. Nanozyme-based electrochemical biosensors for disease biomarker detection. Analyst 2020, 145, 4398–4420.

[14]

Wang, Q.; Jiang, J.; Gao, L. Z. Nanozyme-based medicine for enzymatic therapy: Progress and challenges. Biomed. Mater. 2021, 16, 042002.

[15]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[16]

Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.

[17]

Wang, S. Y.; Li, J. Q.; Li, Q.; Bai, X. W.; Wang, J. L. Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation. Nanoscale 2020, 12, 364–371.

[18]

Wang, Y. Y.; Wu, D. H.; Lv, P.; He, B. L.; Li, X.; Ma, D. W.; Jia, Y. Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts. Nanoscale 2022, 14, 10862–10872.

[19]

Chen, Y. J.; Wang, P. X.; Hao, H. G.; Hong, J. J.; Li, H. J.; Ji, S. F.; Li, A.; Gao, R.; Dong, J. C.; Han, X. D. et al. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[20]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[21]

Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[22]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[23]

Wang, Y.; Zheng, M.; Li, Y. R.; Ye, C. L.; Chen, J.; Ye, J. Y.; Zhang, Q. H.; Li, J.; Zhou, Z. Y.; Fu, X. Z. et al. p-d orbital hybridization induced by a monodispersed Ga site on a Pt3Mn nanocatalyst boosts ethanol electrooxidation. Angew. Chem., Int. Ed. 2022, 61, e202115735.

[24]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating n-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

[25]

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

[26]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[27]

Zhang, E. H.; Tao, L.; An, J. K.; Zhang, J. W.; Meng, L. Z.; Zheng, X. B.; Wang, Y.; Li, N.; Du, S. X.; Zhang, J. T. et al. Engineering the local atomic environments of indium single-atom catalysts for efficient electrochemical production of hydrogen peroxide. Angew. Chem., Int. Ed. 2022, 61, e202117347.

[28]

Yang, J. R.; Li, W. H.; Tan, S. D.; Xu, K. N.; Wang, Y.; Wang, D. S.; Li, Y. D. The electronic metal–support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

[29]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[30]

Chen. Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[31]

Zou, L. L.; Wei, Y. S.; Hou, C. C.; Li, C. X.; Xu Q. Single-Atom Catalysts Derived from Metal-Organic Frameworks for Electrochemical Applications. Small 2021, 17, e2004809.

[32]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[33]

Luo, S.; Gao, J. Q.; Chen, Y.; Ouyang, H.; Wang, L.; Fu, Z. F. Water dispersible cobalt single-atom catalysts with efficient chemiluminescence enhancement for sensitive bioassay. Talanta 2022, 250, 123732.

[34]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[35]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[36]

Wang, Z. H.; Wu, F. G. Emerging single-atom catalysts/nanozymes for catalytic biomedical applications. Adv. Healthc. Mater. 2022, 11, e2101682.

[37]

Mao, Y.; Gao, S. J.; Yao, L. L.; Wang, L.; Qu, H.; Wu, Y. E.; Chen, Y.; Zheng, L. Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J. Hazard. Mater. 2021, 408, 124898.

[38]

Pei, J. H.; Zhao, R. L.; Mu, X. Y.; Wang, J. Y.; Liu, C. L.; Zhang, X. D. Single-atom nanozymes for biological applications. Biomater. Sci. 2020, 8, 6428–6441.

[39]

Shen, L. H.; Ye, D. X.; Zhao, H. B.; Zhang, J. J. Perspectives for single-atom nanozymes: Advanced synthesis, functional mechanisms, and biomedical applications. Anal. Chem. 2021, 93, 1221–1231.

[40]

Shi, Q. L.; Yu, T. R.; Wu, R. F.; Liu, J. Metal–support interactions of single-atom catalysts for biomedical applications. ACS Appl. Mater. Interfaces 2021, 13, 60815–60836.

[41]

Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021, 10, 1310.

[42]

Drekonja, D. M.; Johnson, J. R. Identifying antibiotic-resistant infections. Health Aff. 2018, 37, 1014–1015.

[43]

Li, Y. Y.; Zhu, W. X.; Li, J. S.; Chu, H. T. Research progress in nanozyme-based composite materials for fighting against bacteria and biofilms. Colloids Surf. B Biointerfaces 2021, 198, 111465.

[44]

Zhou, C. Y.; Wang, Q.; Jiang, J.; Gao, L. Z. Nanozybiotics: Nanozyme-based antibacterials against bacterial resistance. Antibiotics (Basel) 2022, 11, 390.

[45]

Wang, Q.; Jiang, J.; Gao, L. Z. Catalytic antimicrobial therapy using nanozymes. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1769.

[46]

Feng, X. B.; Lei, J.; Ma, L.; Ouyang, Q. L.; Zeng, Y. X.; Liang, H.; Lei, C. C.; Li, G. C.; Tan, L.; Liu, X. M. et al. Ultrasonic interfacial engineering of MoS2-modified Zn single-atom catalysts for efficient osteomyelitis sonodynamic ion therapy. Small 2022, 18, e2105775.

[47]

Yu, Y.; Tan, L.; Li, Z. Y.; Liu, X. M.; Zheng, Y. F.; Feng, X. B.; Liang, Y. Q.; Cui, Z. D.; Zhu, S. L.; Wu, S. L. Single-atom catalysis for efficient sonodynamic therapy of methicillin-resistant Staphylococcus aureus-infected osteomyelitis. ACS Nano 2021, 15, 10628–10639.

[48]

Wang, X. W.; Shi, Q. Q.; Zha, Z.; Zhu, D. D.; Zheng, L. R.; Shi, L. X.; Wei, X. W.; Lian, L.; Wu, K. L.; Cheng, L. Copper single-atom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.

[49]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

[50]

Huo, M. F.; Wang, L. Y.; Zhang, H. X.; Zhang, L. L.; Chen, Y.; Shi, J. L. Construction of single-iron-atom nanocatalysts for highly efficient catalytic antibiotics. Small 2019, 15, e1901834.

[51]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[52]

Cao, F. F.; Zhang, L.; You, Y. W.; Zheng, L. R.; Ren, J. S.; Qu, X. G. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew. Chem., Int. Ed. 2020, 59, 5108–5115.

[53]

Wang, D. J.; Zhang, B.; Ding, H.; Liu, D.; Xiang, J. Q.; Gao, X. J.; Chen, X. H.; Li, Z. J.; Yang, L.; Duan, H. X. et al. TiO2 supported single Ag atoms nanozyme for elimination of SARS-CoV2. Nano Today 2021, 40, 101243.

[54]

Wu, S. Z.; Wu, B. J.; Liu, Y. J.; Deng, S.; Lei, L.; Zhang, H. Mini review therapeutic strategies targeting for biofilm and bone infections. Front. Microbiol. 2022, 13, 936285.

[55]

Meroni, G.; Tsikopoulos, A.; Tsikopoulos, K.; Allemanno, F.; Martino, P. A.; Soares Filipe, J. F. A journey into animal models of human osteomyelitis: A review. Microorganisms 2022, 10, 1135.

[56]

Jari Litany, R. I.; Praseetha, P. K. Tiny tots for a big-league in wound repair: Tools for tissue regeneration by nanotechniques of today. J. Control. Release 2022, 349, 443–459.

[57]

Liu, Y. H.; Xu, B. L.; Lu, M. Z.; Li, S. S.; Guo, J.; Chen, F. Z.; Xiong, X. L.; Yin, Z.; Liu, H. Y.; Zhou, D. S. Ultrasmall Fe-doped carbon dots nanozymes for photoenhanced antibacterial therapy and wound healing. Bioact. Mater. 2022, 12, 246–256.

[58]

Dartiguelongue, J. B. Systemic inflammation and sepsis. Part I: Storm formation. Arch. Argent. Pediatr. 2020, 118, e527–e535.

[59]

Wan Muhd Shukeri, W. F.; Mat Nor, M. B.; Md Ralib, A. Sepsis and its impact on outcomes in elderly patients admitted to a Malaysian intensive care unit. Malays. J. Med. Sci. 2022, 29, 145–150.

[60]

Liu, T. T.; Tang, X. M.; Cui, Y.; Xiong, X.; Xu, Y. Y.; Hu, S. H.; Feng, S. Y.; Shao, L. J.; Ren, Y. Q.; Miao, H. J. et al. Fibroblast growth factor 19 improves LPS-induced lipid disorder and organ injury by regulating metabolomic characteristics in mice. Oxid. Med. Cell. Longev. 2022, 2022, 9673512.

[61]

Shimizu, J.; Murao, A.; Nofi, C.; Wang, P.; Aziz, M. Extracellular CIRP promotes GPX4-mediated ferroptosis in sepsis. Front. Immunol. 2022, 13, 903859.

[62]

Maya, S.; Kahn, J. G.; Lin, T. K.; Jacobs, L. M.; Schmidt, L. A.; Burrough, W. B.; Ghasemzadeh, R.; Mousli, L.; Allan, M.; Donovan, M. et al. Indirect COVID-19 health effects and potential mitigating interventions: Cost-effectiveness framework. PLoS One 2022, 17, e0271523.

[63]

Yao, M.; Han, W. X.; Feng, L.; Wei, Z. Z.; Liu, Y.; Zhang, H. R.; Zhang, S. S. pH-programmed responsive nanoplatform for synergistic cancer therapy based on single atom catalysts. Eur. J. Med. Chem. 2022, 233, 114236.

[64]

Yang, J. C.; Yao, H. L.; Guo, Y. D.; Yang, B. W.; Shi, J. L. Enhancing tumor catalytic therapy by co-catalysis. Angew. Chem., Int. Ed. 2022, 61, e202200480.

[65]

Cao, F. F.; Sang, Y. J.; Liu, C. Y.; Bai, F. Q.; Zheng, L. R.; Ren, J. S.; Qu, X. G. Self-adaptive single-atom catalyst boosting selective ferroptosis in tumor cells. ACS Nano 2022, 16, 855–868.

[66]

Lu, X. Y.; Gao, S. S.; Lin, H.; Shi, J. L. Single-atom catalysts for nanocatalytic tumor therapy. Small 2021, 17, e2004467.

[67]

Wang, L.; Qu, X. Z.; Zhao, Y. X.; Weng, Y. Z. W.; Waterhouse, G. I. N.; Yan, H.; Guan, S. Y.; Zhou, S. Y. Exploiting single atom iron centers in a porphyrin-like MOF for efficient cancer phototherapy. ACS Appl. Mater. Interfaces 2019, 11, 35228–35237.

[68]

Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643–2653.

[69]

Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.

[70]

Xu, Q. Q.; Zhang, Y. T.; Yang, Z. L.; Jiang, G. H.; Lv, M. Z.; Wang, H.; Liu, C. H.; Xie, J. N.; Wang, C. Y.; Guo, K. et al. Tumor microenvironment-activated single-atom platinum nanozyme with H2O2 self-supplement and O2-evolving for tumor-specific cascade catalysis chemodynamic and chemoradiotherapy. Theranostics 2022, 12, 5155–5171.

[71]

Li, B.; Guo, L. B.; Chen, M. J.; Guo, Y. Y.; Ge, L. L.; Kwok, H. F. Single-atom Pt-anchored Zn0.5Cd0. 5S boosted photoelectrochemical immunoassay of prostate-specific antigen. Biosens. Bioelectron. 2022, 202, 114006.

[72]

Chen, Y. F.; Jiao, L.; Yan, H. Y.; Xu, W. Q.; Wu, Y.; Zheng, L. R.; Gu, W. L.; Zhu, C. Z. Fe-N-C single-atom catalyst coupling with Pt clusters boosts peroxidase-like activity for cascade-amplified colorimetric immunoassay. Anal. Chem. 2021, 93, 12353–12359.

[73]

Wang, W. Y.; Zhu, Y.; Zhu, X. R.; Zhao, Y. F.; Xue, Z. G.; Xiong, C.; Wang, Z. Y.; Qu, Y. T.; Cheng, J. J.; Chen, M. et al. Biocompatible ruthenium single-atom catalyst for cascade enzyme-mimicking therapy. ACS Appl. Mater. Interfaces 2021, 13, 45269–45278.

[74]

Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Qi Lim, W.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.

[75]

Xu, B. L.; Li, S. S.; Zheng, L. R.; Liu, Y. H.; Han, A. L.; Zhang, J.; Huang, Z. J.; Xie, H. J.; Fan, K. L.; Gao, L. Z. et al. A bioinspired five-coordinated single-atom iron nanozyme for tumor catalytic therapy. Adv. Mater. 2022, 34, e2107088.

[76]

Zhu, Y.; Wang, W. Y.; Cheng, J. J.; Qu, Y. T.; Dai, Y.; Liu, M. M.; Yu, J. N.; Wang, C. M.; Wang, H. J.; Wang, S. C. et al. Stimuli-responsive manganese single-atom nanozyme for tumor therapy via integrated cascade reactions. Angew. Chem., Int. Ed. 2021, 60, 9480–9488.

[77]

Chang, M. Y.; Hou, Z. Y.; Wang, M.; Yang, C. Z.; Wang, R. F.; Li, F.; Liu, D. L.; Peng, T. L.; Li, C. X.; Lin, J. Single-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapy. Angew. Chem., Int. Ed. 2021, 60, 12971–12979.

[78]

Qi, P. Y.; Zhang, J. Y.; Bao, Z. R.; Liao, Y. P.; Liu, Z. M.; Wang, J. K. A platelet-mimicking single-atom nanozyme for mitochondrial damage-mediated mild-temperature photothermal therapy. ACS Appl. Mater. Interfaces 2022, 14, 19081–19090.

[79]

Su, Y. T.; Wu, F.; Song, Q. X.; Wu, M. J.; Mohammadniaei, M.; Zhang, T. W.; Liu, B. L.; Wu, S. S.; Zhang, M.; Li, A. et al. Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials 2022, 281, 121325.

[80]

Liu, Y.; Yao, M.; Han, W. X.; Zhang, H. R.; Zhang, S. S. Construction of a single-atom nanozyme for enhanced chemodynamic therapy and chemotherapy. Chem.—Eur. J. 2021, 27, 13418–13425.

[81]

Feng, N.; Li, Q.; Bai, Q.; Xu, S. C.; Shi, J. X.; Liu, B. J.; Guo, J. C. Development of an Au-anchored Fe single-atom nanozyme for biocatalysis and enhanced tumor photothermal therapy. J. Colloid Interface Sci. 2022, 618, 68–77.

[82]

Wang, L. Y.; Yang, Q. H.; Huo, M. F.; Lu, D.; Gao, Y. S.; Chen, Y.; Xu, H. X. Engineering single-atomic iron-catalyst-integrated 3D-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv. Mater. 2021, 33, e2100150.

[83]

Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat Nanotechnol. 2019, 14, 379–387.

[84]

Zhang, Z. X.; Zhanghuang, C.; Wang, J. K.; Tian, X. M.; Wu, X.; Li, M. X.; Mi, T.; Liu, J. Y.; Jin, L. M.; Li, M. J. et al. Development and validation of nomograms to predict cancer-specific survival and overall survival in elderly patients with prostate cancer: A population-based study. Front. Oncol. 2022, 12, 918780.

[85]

Israël, B.; Hannink, G.; Barentsz, J. O.; van der Leest, M. M. G. Implications of the European association of urology recommended risk assessment algorithm for early prostate cancer detection. Eur. Urol. Open Sci. 2022, 43, 1–4.

[86]

Vargovčák, M.; Dorko, E.; Rimárová, K.; Knap, V. Prostate cancer screening—Is it time to change approach? Cent. Eur. J. Public Health 2022, 30, S11–S15.

[87]

Cao, W.; Chen, H. D.; Yu, Y. W.; Li, N.; Chen, W. Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791.

[88]

Yang, L.; Du, X.; Qin, Y. R.; Wang, X. Y.; Zhang, L. F.; Chen, Z. M.; Wang, Z. J.; Yang, X.; Lei, M.; Zhu, Y. Q. Biomimetic multifunctional nanozymes enhanced radiosensitization for breast cancer via an X-ray triggered cascade reaction. J. Mater. Chem. B 2022, 10, 3667–3680.

[89]

Darabi, F.; Saidijam, M.; Nouri, F.; Mahjub, R.; Soleimani, M. Anti-CD44 and EGFR dual-targeted solid lipid nanoparticles for delivery of doxorubicin to triple-negative breast cancer cell line: Preparation, statistical optimization, and in vitro characterization. Biomed. Res. Int. 2022, 2022, 6253978.

[90]
Zhang, Y.; Ding, X.; Xie, F.; Gao, M. J.; Qiu, J. L.; Wang, Z. W.; Qing, L.; Yan, J. Q.; Peng, N.; Li, Y. Y. et al. Targeted recruitment and degradation of estrogen receptor α by photothermal polydopamine nanoparticles for breast tumor ablation. Adv. Healthc. Mater., in press, https://doi.org/10.1002/adhm.202200960.
[91]

Alamdari, S. G.; Amini, M.; Jalilzadeh, N.; Baradaran, B.; Mohammadzadeh, R.; Mokhtarzadeh, A.; Oroojalian, F. Recent advances in nanoparticle-based photothermal therapy for breast cancer. J. Control. Release 2022, 349, 269–303.

[92]
Archer, J. M.; Truong, M. T.; Shroff, G. S.; Godoy, M. C. B.; Marom, E. M. Imaging of lung cancer staging. Semin. Respir. Crit. Care Med., in press, https://doi.org/10.1055/s-0042-1753476.
[93]

Zhou, X. T.; You, M.; Wang, F. H.; Wang, Z. Z.; Gao, X. F.; Jing, C.; Liu, J. M.; Guo, M. Y.; Li, J. Y.; Luo, A. P. et al. Multifunctional graphdiyne-cerium oxide nanozymes facilitate MicroRNA delivery and attenuate tumor hypoxia for highly efficient radiotherapy of esophageal cancer. Adv. Mater. 2021, 33, e2100556.

[94]

Wang, Y. F.; Zhang, W. H.; Sun, J. W.; Wang, L. D.; Song, X.; Zhao, X. K. Survival risk prediction of esophageal squamous cell carcinoma based on BES-LSSVM. Comput. Intell. Neurosci. 2022, 2022, 3895590.

[95]

Xie, X. L.; Wang, D. P.; Guo, C. X.; Liu, Y. H.; Rao, Q. H.; Lou, F. M.; Li, Q. N.; Dong, Y. Q.; Li, Q. F.; Yang, H. B. et al. Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid. Anal. Chem. 2021, 93, 4916–4923.

[96]

Feng, M.; Zhang, Q.; Chen, X. F.; Deng, D.; Xie, X. Y.; Yang, X. P. Controllable synthesis of boron-doped Zn-N-C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosens. Bioelectron. 2022, 210, 114294.

[97]

Luo, X.; Luo, Z.; Wei, X. Q.; Jiao, L.; Fang, Q.; Wang, H. J.; Wang, J. H.; Gu, W. L.; Hu, L. Y.; Zhu, C. Z. Iridium single-atomic site catalysts with superior oxygen reduction reaction activity for sensitive monitoring of organophosphorus pesticides. Anal. Chem. 2022, 94, 1390–1396.

[98]

Xu, W. Q.; Song, W. Y.; Kang, Y. K.; Jiao, L.; Wu, Y.; Chen, Y. F.; Cai, X. L.; Zheng, L. R.; Gu, W. L.; Zhu, C. Z. Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 2021, 93, 12758–12766.

[99]

Bushira, F. A.; Kitte, S. A.; Xu, C.; Li, H. J.; Zheng, L.; Wang, P.; Jin, Y. D. Two-dimensional-plasmon-boosted iron single-atom electrochemiluminescence for the ultrasensitive detection of dopamine, hemin, and mercury. Anal. Chem. 2021, 93, 9949–9957.

[100]

Lyu, Z. Y.; Ding, S. C.; Wang, M. Y.; Pan, X. Q.; Feng, Z. X.; Tian, H. Y.; Zhu, C. Z.; Du, D.; Lin, Y. H. Iron-imprinted single-atomic site catalyst-based nanoprobe for detection of hydrogen peroxide in living cells. Nanomicro. Lett. 2021, 13, 146.

[101]

Jiao, L.; Xu, W. Q.; Wu, Y.; Yan, H. Y.; Gu, W. L.; Du, D.; Lin, Y. H.; Zhu, C. Z. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 2021, 50, 750–765.

[102]

Wu, W. W.; Huang, L.; Zhu, X. Y.; Chen, J. X.; Chao, D. Y.; Li, M. H.; Wu, S. L.; Dong, S. J. Reversible inhibition of the oxidase-like activity of Fe single-atom nanozymes for drug detection. Chem. Sci. 2022, 13, 4566–4572.

[103]

Song, G. C.; Li, J. C.; Majid, Z.; Xu, W. T.; He, X. Y.; Yao, Z. Y.; Luo, Y. B.; Huang, K. L.; Cheng, N. Phosphatase-like activity of single-atom Ce-N-C nanozyme for rapid detection of Al3+. Food Chem. 2022, 390, 133127.

[104]

Wu, Y.; Wu, J. B.; Jiao, L.; Xu, W. Q.; Wang, H. J.; Wei, X. Q.; Gu, W. L.; Ren, G. X.; Zhang, N.; Zhang, Q. H. et al. Cascade reaction system integrating single-atom nanozymes with abundant Cu sites for enhanced biosensing. Anal. Chem. 2020, 92, 3373–3379.

[105]

Wu, Y.; Jiao, L.; Luo, X.; Xu, W. Q.; Wei, X. Q.; Wang, H. J.; Yan, H. Y.; Gu, W. L.; Xu, B. Z.; Du, D. et al. Oxidase-like Fe-N-C single-atom nanozymes for the detection of acetylcholinesterase activity. Small 2019, 15, e1903108.

[106]

Qin, Y.; Wen, J.; Wang, X. S.; Jiao, L.; Wei, X. Q.; Wang, H. J.; Li, J. L.; Liu, M. W.; Zheng, L. R.; Hu, L. Y. et al. Iron single-atom catalysts boost photoelectrochemical detection by integrating interfacial oxygen reduction and enzyme-mimicking activity. ACS Nano 2022, 16, 2997–3007.

[107]

Niu, X. H.; Shi, Q. R.; Zhu, W. L.; Liu, D.; Tian, H. Y.; Fu, S. F.; Cheng, N.; Li, S. Q.; Smith, J. N.; Du, D. et al. Unprecedented peroxidase-mimicking activity of single-atom nanozyme with atomically dispersed Fe-Nx moieties hosted by MOF derived porous carbon. Biosens. Bioelectron. 2019, 142, 111495.

[108]

Xie, X. L.; Wang, Y. F.; Zhou, X. B.; Chen, J. Y.; Wang, M. K.; Su, X. G. Fe-N-C single-atom nanozymes with peroxidase-like activity for the detection of alkaline phosphatase. Analyst 2021, 146, 896–903.

[109]

Chen, Q. M.; Li, S. Q.; Liu, Y.; Zhang, X. D.; Tang, Y.; Chai, H. X.; Huang, Y. M. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B:Chem. 2020, 305, 127511.

[110]

Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, e1901485.

[111]

Hou, H. F.; Mao, J. J.; Han, Y. H.; Wu, F.; Zhang, M. N.; Wang, D. S.; Mao, L. Q.; Li, Y. D. Single-atom electrocatalysis: A new approach to in vivo electrochemical biosensing. Sci. China Chem. 2019, 62, 1720–1724.

[112]

Chen, M.; Zhou, H.; Liu, X. K.; Yuan, T. W.; Wang, W. Y.; Zhao, C.; Zhao, Y. F.; Zhou, F. Y.; Wang, X.; Xue, Z. G. et al. Single iron site nanozyme for ultrasensitive glucose detection. Small 2020, 16, e2002343.

[113]

Wang, Y.; Zhang, Z. W.; Jia, G. R.; Zheng, L. R.; Zhao, J. X.; Cui, X. Q. Elucidating the mechanism of the structure-dependent enzymatic activity of Fe-N/C oxidase mimics. Chem. Commun. (Camb. ) 2019, 55, 5271–5274.

[114]

Liu, Y.; Yan, J. H.; Huang, Y.; Sun, Z. H.; Zhang, H. J.; Fu, L. H. Y.; Li, X. W.; Jin, Y. R. Single-atom Fe-anchored nano-diamond with enhanced dual-enzyme mimicking performance for H2O2 and glutathione detection. Front. Bioeng. Biotechnol. 2022, 9, 790849.

[115]

Jiao, L.; Xu, W. Q.; Yan, H. Y.; Wu, Y.; Liu, C. R.; Du, D.; Lin, Y. H.; Zhu, C. Z. Fe-N-C single-atom nanozymes for the intracellular hydrogen peroxide detection. Anal. Chem. 2019, 91, 11994–11999.

[116]

Lai, X.; Shen, Y.; Gao, S. B.; Chen, Y. J.; Cui, Y. S.; Ning, D. X.; Ji, X. B.; Liu, Z. W.; Wang, L. G. The Mn-modified porphyrin metal-organic framework with enhanced oxidase-like activity for sensitively colorimetric detection of glutathione. Biosens. Bioelectron. 2022, 213, 114446.

[117]

Li, D.; Tian, R.; Kang, S. Y.; Chu, X. Q.; Ge, D. H.; Chen, X. J. Fabrication of Ag nanoparticles coupled with ferrous disulfide biocatalyst as a peroxidase mimic for sensitive electrochemical and colorimetric dual-mode biosensing of H2O2. Food Chem. 2022, 393, 133386.

[118]

Jiang, S.; Zhang, C. F.; Zou, T. Single-atom catalysts for biotherapy applications: A systematic review. Nanomaterials (Basel) 2020, 10, 2518.

[119]

Xiang, H. J.; Feng, W.; Chen, Y. Single-atom catalysts in catalytic biomedicine. Adv. Mater. 2020, 32, e1905994.

[120]

Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. (Camb. ) 2019, 55, 159–162.

[121]

Lu, M. J.; Wang, C.; Ding, Y. Q.; Peng, M. H.; Zhang, W.; Li, K.; Wei, W.; Lin, Y. Q. Fe-N/C single-atom catalysts exhibiting multienzyme activity and ROS scavenging ability in cells. Chem. Commun. (Camb. ) 2019, 55, 14534–14537.

[122]

Yan, R. J.; Sun, S.; Yang, J.; Long, W.; Wang, J. Y.; Mu, X. Y.; Li, Q. F.; Hao, W. T.; Zhang, S. F.; Liu, H. L. et al. Nanozyme-based bandage with single-atom catalysis for brain trauma. ACS Nano 2019, 13, 11552–11560.

[123]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

Nano Research
Pages 1992-2002
Cite this article:
Jin C, Fan S, Zhuang Z, et al. Single-atom nanozymes: From bench to bedside. Nano Research, 2023, 16(2): 1992-2002. https://doi.org/10.1007/s12274-022-5060-5
Topics:

6355

Views

31

Crossref

30

Web of Science

31

Scopus

8

CSCD

Altmetrics

Received: 07 August 2022
Revised: 12 September 2022
Accepted: 14 September 2022
Published: 08 November 2022
© Tsinghua University Press 2022
Return