AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selenium-engineered bottom-up-synthesized lanthanide coordination nanoframeworks as efficiency X-ray-responsive radiosensitizers

Liwen Zhu§Leung Chan§Junping Wang§Mingkai ChenFei CaiYuan TianLi Ma( )Tianfeng Chen( )
Department of Chemistry, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China

§ Liwen Zhu, Leung Chan, and Junping Wang contributed equally to this work.

Show Author Information

Graphical Abstract

This study presents a promising approach for effective radiotherapy through selenium-engineering stable lanthanide nanoframeworks with precise coordination structures as radiosensitizers to mitigate X-ray side effects.

Abstract

Radiotherapy is one of the main therapeutic methods for cancers; however, nonselective killing of normal cells and tumor cells by X-ray inevitably results in toxicity and side effects. Developing low-toxicity and high-efficiency radiosensitizers to reduce the practical dose of X-ray is a promising approach to overcoming these side effects. Here, we report the use of carboxylate-containing organic ligands to construct one-dimensional high-Z lanthanide chains for efficient response to X-ray. The one-dimensional lanthanide chains are stacked through weak interactions to form coordination nanoframeworks in the presence of polyethylenimine (PEI). The morphology and activity of the synthesized nanoframeworks can be regulated through selenium atom engineering. This study presents a promising approach for effective radiotherapy through selenium-engineering stable lanthanide nanoframeworks with precise coordination structures as radiosensitizers to mitigate X-ray side effects.

Electronic Supplementary Material

Download File(s)
12274_2022_5065_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J. W. W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403.

[2]

Hashimoto, Y.; Tatsumi, S.; Takeda, R.; Naka, A.; Ogane, N.; Kameda, Y.; Kawachi, K.; Shimizu, S.; Sakai, M.; Kamoshida, S. Expression of organic anion-transporting polypeptide 1A2 and organic cation transporter 6 as a predictor of pathologic response to neoadjuvant chemotherapy in triple negative breast cancer. Breast Cancer Res. Treat. 2014, 145, 101–111.

[3]

Zhong, W. H.; Zhang, X. Y.; Zeng, Y. X.; Lin, D. J.; Wu, J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res. 2021, 14, 2067–2089.

[4]

Kwatra, D.; Venugopal, A.; Anant. S. Nanoparticles in radiation therapy: A summary of various approaches to enhance radiosensitization in cancer. Transl. Cancer Res. 2013, 2, 330–342.

[5]

Zheng, L. T.; Zhu, R.; Chen, L. L.; Fu, Q. R.; Li, J. Y.; Chen, C.; Song, J. B.; Yang, H. H. X-ray sensitive high-Z metal nanocrystals for cancer imaging and therapy. Nano Res. 2021, 14, 3744–3755.

[6]
Yang, Z. B.; Chen, H. R. Recent development of multifunctional responsive gas-releasing nanoplatforms for tumor therapeutic application. Nano Res., in press, https://doi.org/10.1007/s12274-022-4473-5.
[7]

Cheng, R.; Liu, H. M.; Dong, X. H.; Zhu, S.; Zhou, R. Y.; Wang, C. Y.; Wang, Y.; Wang, X.; Su, C. J.; Gu, Z. J. Semiconductor heterojunction-based radiocatalytic platforms for tumors treatment by enhancing radiation response and reducing radioresistance. Chem. Eng. J. 2020, 394, 124872.

[8]

Wang, H.; Mu, X. Y.; He, H.; Zhang, X. D. Cancer radiosensitizers. Trends Pharmacol. Sci. 2018, 39, 24–48.

[9]

Zeng, L. J.; Cao, Y. H.; He, L.; Ding, S. S.; Bian, X. W.; Tian, G. Metal-ligand coordination nanomaterials for radiotherapy: Emerging synergistic cancer therapy. J. Mater. Chem. B 2021, 9, 208–227.

[10]

Franklin, S. J. Lanthanide-mediated DNA hydrolysis. Curr. Opin. Chem. Biol. 2001, 5, 201–208.

[11]

Wu, P. Y.; Xia, L. L.; Huangfu, M. J.; Fu, F. B.; Wang, M. Q.; Wen, B. X.; Yang, Z. Y.; Wang, J. Lanthanide-based metal-organic frameworks containing “V-shaped” tetracarboxylate ligands: Synthesis, crystal structures, “naked-eye” luminescent detection, and catalytic properties. Inorg. Chem. 2019, 59, 264–273.

[12]
Zhu, K.; Wu, Z. D.; Li, Q. Y.; Hou, M. R.; Hu, H. L.; Zheng, S. T.; Qi, L.; Xu, Y. K.; Yan, C. G.; Zhao, B. X. Immune microenvironment-reshaping Au@Bi2Te3 nanoparticles for spectral computed tomography/photoacoustic imaging-guided synergetic photo/radio/immunotherapy. Nano Res., in press, https://doi.org/10.1007/s12274-022-4645-3.
[13]

Jin, G. Q.; Ning, Y. Y.; Geng, J. X.; Jiang, Z. F.; Wang, Y.; Zhang, J. L. Joining the journey to near infrared (NIR) imaging: The emerging role of lanthanides in the designing of molecular probes. Inorg. Chem. Front. 2020, 7, 289–299.

[14]

Zhang, H. J.; Ye, K.; Huang, X. T.; Lin, X.; Ma, L.; Chen, T. F. Designing lanthanide coordination nanoframeworks as X-ray responsive radiosensitizers for efficient cancer therapy. Inorg. Chem. Front. 2021, 8, 3433–3439.

[15]

Prados, R.; Stadtherr, G. L.; Donato, H; Martin, R. B. Lanthanide complexes of amino acids. J. Inorg. Nucl. Chem. 1974, 36, 689–693.

[16]

Wang, R. Y.; Liu, H.; Carducci, M. D.; Jin, T. Z.; Zheng, C.; Zheng, Z. P. Lanthanide coordination with α-amino acids under near physiological pH conditions: Polymetallic complexes containing the cubane-like [Ln43-OH)4]8+ cluster core. Inorg. Chem. 2001, 40, 2743–2750.

[17]

Li, X. Y.; Jing, Y. R.; Zheng, J. Y.; Ding, H. J.; Li, Q. W.; Yu, M. H.; Bu, X. H. Two luminescent high-nuclearity lanthanide clusters Ln48 (Ln = Eu and Tb) with a nanopillar structure. Cryst. Growth Des. 2020, 20, 5294–5301.

[18]

Chen, Q. Q.; Cheng, J. H.; Wang, J.; Li, L.; Liu, Z. P.; Zhou, X. H.; You, Y. J.; Huang, W. A fluorescent Eu(III) MOF for highly selective and sensitive sensing of picric acid. Sci. China Chem. 2019, 62, 205–211.

[19]

Gallops, C. E.; Yu, C.; Ziebarth, J. D.; Wang, Y. M. Effect of the protonation level and ionic strength on the structure of linear polyethyleneimine. ACS Omega 2019, 4, 7255–7264.

[20]

Zhou, Z. X.; Shen, Y. Q.; Tang, J. B.; Jin, E. L.; Ma, X. P.; Sun, Q. H.; Zhang, B.; Van Kirk, E. A.; Murdoch, W. J. Linear polyethyleneimine-based charge-reversal nanoparticles for nuclear-targeted drug delivery. J. Mater. Chem. 2011, 21, 19114–19123.

[21]

Zheng, X.; Chen, X.; Yu, X. D. Lanthanide-based, water-soluble, white light-emitting coordination complexes for multitarget luminescence detection. J. Mol. Liq. 2022, 347, 118353.

[22]

Ilmi, R.; Khan, M. S.; Sun, W. D.; Zhou, L.; Wong, W. Y.; Raithby, P. R. A single component white electroluminescent device fabricated from a metallo-organic terbium complex. J. Mater. Chem. C 2019, 7, 13966–13975.

[23]

Sun, B. J.; Luo, C.; Zhang, X. B.; Guo, M. R.; Sun, M. C.; Yu, H.; Chen, Q.; Yang, W. Q.; Wang, M. L.; Zuo, S. Y. et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 2019, 10, 3211.

[24]

Li, G. S.; Hu, Z. F. Bottom-up synthesis of semiconductive carbonaceous nanosheets on hematite photoanode for photoelectrochemical water splitting. Nano Res. 2022, 15, 627–636.

[25]

Sun, X.; Zhang, M. Z.; Du, R. H.; Zheng, X. J.; Tang, C. G.; Wu, Y. Q.; He, J. C.; Huang, W.; Wang, Y. Y.; Zhang, Z. Y. et al. A polyethyleneimine-driven self-assembled nanoplatform for fluorescence and MR dual-mode imaging guided cancer chemotherapy. Chem. Eng. J. 2018, 350, 69–78.

[26]

An, F. F.; Cao, W. P.; Liang, X. J. Nanostructural systems developed with positive charge generation to drug delivery. Adv. Healthcare Mater. 2014, 3, 1162–1181.

[27]

Chan, L.; Gao, P.; Zhou, W. H.; Mei, C. M.; Huang, Y. Y.; Yu, X. F.; Chu, P. K.; Chen, T. F. Sequentially triggered delivery system of black phosphorus quantum dots with surface charge-switching ability for precise tumor radiosensitization. ACS Nano 2018, 12, 12401–12415.

[28]

Zheng, N. N.; Zhang, S. H.; Wang, L.; Qi, Z. L.; Peng, Q.; Jian, L. R.; Bai, Y.; Feng, Y.; Shen, J. C.; Wang, R. X. et al. Boosting image-guiding radiation therapy through W18O49 nanospheres and the second near-infrared light irradiation. Nano Res. 2022, 15, 2315–2323.

[29]

Abdou, P.; Wang, Z. J.; Chen, Q.; Chan, A.; Zhou, D. R.; Gunadhi, V.; Gu, Z. Advances in engineering local drug delivery systems for cancer immunotherapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1632.

[30]

Xie, J. N.; Gong, L. J.; Zhu, S.; Yong, Y.; Gu, Z. J.; Zhao, Y. L. Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv. Mater. 2019, 31, 1802244.

[31]

Chen, M. K.; Huang, X. T.; Lai, J.; Ma, L.; Chen, T. F. Substituent-regulated highly X-ray sensitive Os(VI) nitrido complex for low-toxicity radiotherapy. Chin. Chem. Lett. 2021, 32, 158–161.

[32]

Yang, B. W.; Chen, Y.; Shi, J. L. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881–4985.

[33]

Taylor, C. T. Mitochondria and cellular oxygen sensing in the HIF pathway. Biochem. J. 2008, 409, 19–26.

[34]

Finkel, T. Reactive oxygen species and signal transduction. IUBMB Life 2001, 52, 3–6.

[35]

Matés, J. M.; Sánchez-Jiménez, F. M. Role of reactive oxygen species in apoptosis: Implications for cancer therapy. Int. J. Biochem. Cell Biol. 2000, 32, 157–170.

[36]

Anderson, E. J.; Lustig, M. E.; Boyle, K. E.; Woodlief, T. L.; Kane, D. A.; Lin, C. T.; Price Ⅲ, J. W.; Kang, L.; Rabinovitch, P. S.; Szeto, H. H. et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest. 2009, 119, 573–581.

[37]

Zorov, D. B.; Juhaszova, M.; Sollott, S. J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950.

[38]

Qu, X. Y.; Liu, Z. Q.; Li, N.; Ma, B. H.; Zhao, H. Y.; Li, Y.; Lei, B.; Du, Y. P. Biodegradable biocompatible MgO/Eu nanodrug with acid-base conversion capacity for targeted lung cancer therapy. Chem. Eng. J. 2022, 446, 136323.

[39]

Xie, L. L.; Shi, F.; Tan, Z. Q.; Li, Y. S.; Bode, A. M.; Cao, Y. Mitochondrial network structure homeostasis and cell death. Cancer Sci. 2018, 109, 3686–3694.

[40]

Galloway, C. A.; Lee, H.; Yoon, Y. Mitochondrial morphology-emerging role in bioenergetics. Free Radical Biol. Med. 2012, 53, 2218–2228.

[41]

Lenaz, G.; Bovina, C.; D'Aurelio, M.; Fato, R.; Formiggini, G.; Genova, M. L.; Giuliano, G.; Pich, M. M.; Paolucci, U.; Castelli, G. P. et al. Role of mitochondria in oxidative stress and aging. Ann. N. Y. Acad. Sci. 2002, 959, 199–213.

[42]

Lenaz, G.; D’Aurelio, M.; Pich, M. M.; Genova, M. L.; Ventura, B.; Bovina, C.; Formiggini, G.; Castelli, G. P. Mitochondrial bioenergetics in aging. Biochim. Biophys. Acta 2000, 1459, 397–404.

[43]

Campello, S.; Scorrano, L. Mitochondrial shape changes: Orchestrating cell pathophysiology. EMBO Rep. 2010, 11, 678–684.

[44]

Shi, Y. G. A structural view of mitochondria-mediated apoptosis. Nat. Struct. Biol. 2001, 8, 394–401.

[45]

Sharma, V.; Anderson, D.; Dhawan, A. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 2012, 17, 852–870.

[46]

Xiong, S. B.; Mu, T. Y.; Wang, G. W.; Jiang, X. J. Mitochondria-mediated apoptosis in mammals. Protein Cell 2014, 5, 737–749.

[47]

Brentnall, M.; Rodriguez-Menocal, L.; De Guevara, R. L.; Cepero, E.; Boise, L. H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 2013, 14, 32.

[48]

Hall, J.; Angèle, S. Radiation, DNA damage and cancer. Mol. Med. Today 1999, 5, 157–164.

[49]

Rogakou, E. P.; Pilch, D. R.; Orr, A. H.; Ivanova, V. S.; Bonner, W. M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868.

Nano Research
Pages 5169-5175
Cite this article:
Zhu L, Chan L, Wang J, et al. Selenium-engineered bottom-up-synthesized lanthanide coordination nanoframeworks as efficiency X-ray-responsive radiosensitizers. Nano Research, 2023, 16(4): 5169-5175. https://doi.org/10.1007/s12274-022-5065-0
Topics:

7101

Views

10

Crossref

9

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 19 August 2022
Revised: 15 September 2022
Accepted: 16 September 2022
Published: 23 November 2022
© Tsinghua University Press 2022
Return