AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

TiO2/Cu2O heterostructure enabling selective and uniform lithium deposition towards stable lithium metal anodes

Lingyan Ruan1,2Xianying Qin1,3( )Kui Lin1,2Zijin Yang1,2Qiuchan Cai1,2Tong Li1,2Fangting Wu1,2Feiyu Kang1,2Baohua Li1( )
Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China
School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Shenzhen Graphene Innovation Center Co. Ltd., Shenzhen 518107, China
Show Author Information

Graphical Abstract

Titanium dioxide/cuprous oxide (TiO2/Cu2O) heterostructure decorated Cu mesh (H-CM) is conducted by a simple dip-coating method followed by oxidation and reduction processes. The H-CM realizes selective Li nucleation by nano TiO2 and then induces fast and uniform Li conduction with the aid of heterostructure interface and nano Cu2O, contributing to dendrite-free Li deposition. And the H-CM-based Li anode exhibits excellent cycling stability.

Abstract

Lithium (Li) metal is the ultimate anode choice for next generation high energy density batteries. However, the high nucleation energy barrier and nonuniform electric field distribution, as well as huge volume expansion, lead to the uncontrollable growth of Li dendrites and poor utilization of Li metal, which hinders its practical application. Herein, titanium dioxide/cuprous oxide (TiO2/Cu2O) heterostructure is constructed on the rimous skeleton of Cu mesh, and the heterostructure decorated rimous Cu mesh (H-CM) can act as both current collector and host for dendrite-free Li metal anode. The TiO2/Cu2O heterostructure realizes selective Li nucleation by nano TiO2 and then induces fast and uniform Li conduction with the aid of heterostructure interface and nano Cu2O contributing to dendrite-free Li deposition. While the internal and external space of rimous skeletons in H-CM is used to accommodate the deposited Li and buffer its volume change. Therefore, the cycling reversibility of the derived Li metal anode in H-CM is improved to a high Coulombic efficiency of 98.8% for more than 350 cycles at a current density of 1 mA·cm−2, and 1,000 h (equals to 500 cycles) stable repeated Li plating/stripping can be operated in a symmetric cell. Furthermore, full cells with limited Li anode and high loading LiFePO4 cathode present excellent cycling and rate performances.

Electronic Supplementary Material

Download File(s)
12274_2022_5066_MOESM1_ESM.pdf (1.3 MB)
12274_2022_5066_MOESM2_ESM.pdf (972.1 KB)

References

[1]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[2]

Winter, M.; Barnett, B.; Xu, K. Before Li ion batteries. Chem. Rev. 2018, 118, 11433–11456.

[3]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 1800561.

[4]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[5]

Grande, L.; Paillard, E.; Hassoun, J.; Park, J. B.; Lee, Y. J.; Sun, Y. K.; Passerini, S.; Scrosati, B. The lithium/air battery: Still an emerging system or a practical reality? Adv. Mater. 2015, 27, 784–800.

[6]

Chen, K.; Huang, G.; Ma, J. L.; Wang, J.; Yang, D. Y.; Yang, X. Y.; Yu, Y.; Zhang, X. B. The stabilization effect of CO2 in lithium-oxygen/CO2 batteries. Angew. Chem., Int. Ed. 2020, 59, 16661–16667.

[7]

Jin, Y.; Liu, K.; Lang, J. L.; Jiang, X.; Zheng, Z. K.; Su, Q. H.; Huang, Z. Y.; Long, Y. Z.; Wang, C. A.; Wu, H. et al. High-energy-density solid-electrolyte-based liquid Li-S and Li-Se batteries. Joule 2020, 4, 262–274.

[8]

Bieker, G.; Winter, M.; Bieker, P. Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys. Chem. Chem. Phys. 2015, 17, 8670–8679.

[9]

Chen, K. H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P. Dead lithium: Mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 2017, 5, 11671–11681.

[10]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[11]

Heine, J.; Hilbig, P.; Qi, X.; Niehoff, P.; Winter, M.; Bieker, P. Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J. Electrochem. Soc. 2015, 162, A1094–A1101.

[12]

Piao, N.; Ji, X.; Xu, H.; Fan, X. L.; Chen, L.; Liu, S. F.; Garaga, M. N.; Greenbaum, S. G.; Wang, L.; Wang, C. S. et al. Countersolvent electrolytes for lithium-metal batteries. Adv. Energy Mater. 2020, 10, 1903568.

[13]

Liu, M.; Cheng, Z.; Qian, K.; Verhallen, T.; Wang, C.; Wagemaker, M. Efficient Li-metal plating/stripping in carbonate electrolytes using a LiNO3-gel polymer electrolyte, monitored by operando neutron depth profiling. Chem. Mater. 2019, 31, 4564–4574.

[14]

Lu, Y.; Meng, X. Y.; Alonso, J. A.; Fernández-Díaz, M. T.; Sun, C. W. Effects of fluorine doping on structural and electrochemical properties of Li6.25Ga0.25La3Zr2O12 as electrolytes for solid-state lithium batteries. ACS Appl. Mater. Interfaces 2019, 11, 2042–2049.

[15]

Han, X. G.; Gong, Y. H.; Fu, K.; He, X. F.; Hitz, G. T.; Dai, J. Q.; Pearse, A.; Liu, B. Y.; Wang, H.; Rubloff, G. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572–579.

[16]

Chen, H.; Pei, A.; Lin, D. C.; Xie, J.; Yang, A. K.; Xu, J. W.; Lin, K. X.; Wang, J. Y.; Wang, H. S.; Shi, F. F. et al. Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv. Energy Mater. 2019, 9, 1900858.

[17]

Gao, Y.; Yan, Z. F.; Gray, J. L.; He, X.; Wang, D. W.; Chen, T. H.; Huang, Q. Q.; Li, Y. C.; Wang, H. Y.; Kim, S. H. et al. Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat. Mater. 2019, 18, 384–389.

[18]

Xu, R.; Zhang, X. Q.; Cheng, X. B.; Peng, H. J.; Zhao, C. Z.; Yan, C.; Huang, J. Q. Artificial soft–rigid protective layer for dendrite-free lithium metal anode. Adv. Funct. Mater. 2018, 28, 1705838.

[19]

Luo, Z.; Tao, S. S.; Tian, Y.; Xu, L. Q.; Wang, Y.; Cao, X. Y.; Wang, Y. P.; Deng, W. T.; Zou, G. Q.; Liu, H. et al. Robust artificial interlayer for columnar sodium metal anode. Nano Energy 2022, 97, 107203.

[20]

Shen, X.; Cheng, X. B.; Shi, P.; Huang, J. Q.; Zhang, X. Q.; Yan, C.; Li, T.; Zhang, Q. Lithium-matrix composite anode protected by a solid electrolyte layer for stable lithium metal batteries. J. Energy Chem. 2019, 37, 29–34.

[21]

Chen, Y. X.; Dou, X. Y.; Wang, K.; Han, Y. S. Lithium dendrites inhibition via diffusion enhancement. Adv. Energy Mater. 2019, 9, 1900019.

[22]

Wang, A. X.; Deng, Q. B.; Deng, L. J.; Guan, X. Z.; Luo, J. Y. Eliminating tip dendrite growth by lorentz force for stable lithium metal anodes. Adv. Funct. Mater. 2019, 29, 1902630.

[23]

Yan, K.; Wang, J. Y.; Zhao, S. Q.; Zhou, D.; Sun, B.; Cui, Y.; Wang, G. X. Temperature-dependent nucleation and growth of dendrite-free lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 11364–11368.

[24]

Zhan, Y. X.; Shi, P.; Zhang, R.; Zhang, X. Q.; Shen, X.; Jin, C. B.; Li, B. Q.; Huang, J. Q. Deciphering the effect of electrical conductivity of hosts on lithium deposition in composite lithium metal anodes. Adv. Energy Mater. 2021, 11, 2101654.

[25]

Feng, X. F.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

[26]

Zou, P. C.; Wang, Y.; Chiang, S. W.; Wang, X. Y.; Kang, F. Y.; Yang, C. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat. Commun. 2018, 9, 464.

[27]

Lin, K.; Li, T.; Chiang, S. W.; Liu, M.; Qin, X. Y.; Xu, X. F.; Zhang, L. H.; Kang, F. Y.; Chen, G. H.; Li, B. H. Facile synthesis of ant-nest-like porous duplex copper as deeply cycling host for lithium metal anodes. Small 2020, 16, 2001784.

[28]

Yun, Q. B.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Chemical dealloying derived 3D porous current collector for Li metal anodes. Adv. Mater. 2016, 28, 6932–6939.

[29]

Chi, S. S.; Liu, Y.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

[30]

Li, Q. Y.; Li, Y. L.; Liu, L.; Luo, C. Z.; Hao, Y.; Shen, T.; Chen, L. S.; Liu, Y. H.; Chen, Y. Controlled growth of Li dendrite induced by periodic Ni mesh for ultrastable lithium metal battery. Small 2020, 16, 2005639.

[31]

Gu, Y.; Xu, H. Y.; Zhang, X. G.; Wang, W. W.; He, J. W.; Tang, S.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F. et al. Lithiophilic faceted Cu (100) surfaces: High utilization of host surface and cavities for lithium metal anodes. Angew. Chem., Int. Ed. 2019, 58, 3092–3096.

[32]

Zhu, J. F.; Chen, J.; Luo, Y.; Sun, S. Q.; Qin, L. G.; Xu, H.; Zhang, P. G.; Zhang, W.; Tian, W. B.; Sun, Z. M. Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Mater. 2019, 23, 539–546.

[33]

Zhang, X. J.; Ma, F.; Srinivas, K.; Yu, B.; Chen, X.; Wang, B.; Wang, X. Q.; Liu, D. W.; Zhang, Z. H.; He, J. R. et al. Fe3N@N-doped graphene as a lithiophilic interlayer for highly stable lithium metal batteries. Energy Storage Mater. 2022, 45, 656–666.

[34]

Luo, Z.; Liu, C.; Tian, Y.; Zhang, Y.; Jiang, Y. L.; Hu, J. H.; Hou, H. S.; Zou, G. Q.; Ji, X. B. Dendrite-free lithium metal anode with lithiophilic interphase from hierarchical frameworks by tuned nucleation. Energy Storage Mater. 2020, 27, 124–132.

[35]

Zhang, D.; Dai, A.; Fan, B. F.; Li, Y. G.; Shen, K.; Xiao, T.; Hou, G. Y.; Cao, H. Z.; Tao, X. Y.; Tang, Y. P. Three-dimensional ordered macro/mesoporous Cu/Zn as a lithiophilic current collector for dendrite-free lithium metal anode. ACS Appl. Mater. Interfaces 2020, 12, 31542–31551.

[36]

Fang, S.; Bresser, D.; Passerini, S. Transition metal oxide anodes for electrochemical energy storage in lithium-and sodium-ion batteries. Adv. Energy Mater. 2020, 10, 1902485.

[37]

Xue, P.; Sun, C.; Li, H. P.; Liang, J. J.; Lai, C. Superlithiophilic amorphous SiO2-TiO2 distributed into porous carbon skeleton enabling uniform lithium deposition for stable lithium metal batteries. Adv. Sci. 2019, 6, 1900943.

[38]

Liu, Y. M.; Zhang, S. Q.; Qin, X. Y.; Kang, F. Y.; Chen, G. H.; Li, B. H. In-plane highly dispersed Cu2O nanoparticles for seeded lithium deposition. Nano Lett. 2019, 19, 4601–4607.

[39]

Ma, Y.; Gu, Y. T.; Yao, Y. Z.; Jin, H. D.; Zhao, X. H.; Yuan, X. T.; Lian, Y. B.; Qi, P. W.; Shah, R.; Peng, Y. et al. Alkaliphilic Cu2O nanowires on copper foam for hosting Li/Na as ultrastable alkali-metal anodes. J. Mater. Chem. A 2019, 7, 20926–20935.

[40]

Li, Y.; Zhang, J. W.; Chen, Q. G.; Xia, X. H.; Chen, M. H. Emerging of heterostructure materials in energy storage: A review. Adv. Mater. 2021, 33, 2100855.

[41]

Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non-cryst. Solids 1995, 47, 222–229.

[42]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[43]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[44]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[45]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[46]

Chen, X. R.; Li, B. Q.; Zhu, C.; Zhang, R.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. A coaxial-interweaved hybrid lithium metal anode for long-lifespan lithium metal batteries. Adv. Energy Mater. 2019, 9, 1901932.

[47]

Lin, K.; Xu, X. F.; Qin, X. Y.; Zhang, G. Q.; Liu, M.; Lv, F. Z.; Xia, Y.; Kang, F. Y.; Chen, G. H.; Li, B. H. Restructured rimous copper foam as robust lithium host. Energy Storage Mater. 2020, 26, 250–259.

[48]

Fang, L. B.; Lan, Z. Y.; Guan, W. H.; Zhou, P.; Bahlawane, N.; Sun, W. P.; Lu, Y. H.; Liang, C.; Yan, M.; Jiang, Y. Z. Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Mater. 2019, 18, 107–113.

[49]

Huang, S. B.; Chen, L.; Wang, T. S.; Hu, J. K.; Zhang, Q. F.; Zhang, H.; Nan, C. W.; Fan, L. Z. Self-propagating enabling high lithium metal utilization ratio composite anodes for lithium metal batteries. Nano Lett. 2021, 21, 791–797.

[50]

Huang, S. B.; Zhang, W. F.; Ming, H.; Cao, G. P.; Fan, L. Z.; Zhang, H. Chemical energy release driven lithiophilic layer on 1 m2 commercial brass mesh toward highly stable lithium metal batteries. Nano Lett. 2019, 19, 1832–1837.

[51]

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

[52]

Ye, H.; Zheng, Z. J.; Yao, H. R.; Liu, S. C.; Zuo, T. T.; Wu, X. W.; Yin, Y. X.; Li, N. W.; Gu, J. J.; Cao, F. F. et al. Guiding uniform Li plating/stripping through lithium-aluminum alloying medium for long-life Li metal batteries. Angew. Chem., Int. Ed. 2019, 58, 1094–1099.

[53]

Zhang, H. T.; Shen, C.; Huang, Y. B.; Liu, Z. P. Spontaneously formation of SEI layers on lithium metal from LiFSI/DME and LiTFSI/DME electrolytes. Appl. Surf. Sci. 2021, 537, 147983.

[54]

Lin, K.; Xu, X. F.; Qin, X. Y.; Wang, S. W.; Han, C. P.; Geng, H. R.; Li, X. J.; Kang, F. Y.; Chen, G. H.; Li, B. H. Dendrite-free lithium deposition enabled by a vertically aligned graphene pillar architecture. Carbon 2021, 185, 152–160.

[55]

Zhang, W. Y.; Jin, H. X.; Zhang, Y. J.; Du, Y. Q.; Wang, Z. H.; Zhang, J. X. 3D lithiophilic and conductive N-CNT@Cu2O@Cu framework for a dendrite-free lithium metal battery. Chem. Mater. 2020, 32, 9656–9663.

[56]

Luan, J. Y.; Zhang, Q.; Yuan, H. Y.; Peng, Z. G.; Tang, Y. G.; Wu, S. G.; Wang, H. Y. Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chem. Eng. J. 2020, 395, 124922.

[57]

Wu, S. L.; Zhang, Z. Y.; Lan, M. H.; Yang, S. R.; Cheng, J. Y.; Cai, J.; Shen, J. H.; Zhu, Y.; Zhang, K. L.; Zhang, W. J. Lithiophilic Cu-CuO-Ni hybrid structure: Advanced current collectors toward stable lithium metal anodes. Adv. Mater. 2018, 30, 1705830.

[58]

Wu, B. B.; Lochala, J.; Taverne, T.; Xiao, J. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth. Nano Energy 2017, 40, 34–41.

[59]

Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.

[60]

Zhang, L.; Zheng, H. F.; Liu, B.; Xie, Q. S.; Chen, Q. L.; Lin, L.; Lin, J.; Qu, B. H.; Wang, L. S.; Peng, D. L. Homogeneous bottom-growth of lithium metal anode enabled by double-gradient lithiophilic skeleton. J. Energy Chem. 2021, 57, 392–400.

[61]

Luo, Z.; Li, S.; Yang, L.; Tian, Y.; Xu, L. Q.; Zou, G. Q.; Hou, H. S.; Wei, W. F.; Chen, L. B.; Ji, X. B. Interfacially Redistributed charge for robust lithium metal anode. Nano Energy 2021, 87, 106212.

[62]

Kang, D. M.; Hart, N.; Xiao, M. Y.; Lemmon, J. P. Short circuit of symmetrical Li/Li Cell in Li metal anode research. Acta Phys. -Chim. Sin. 2021, 37, 2008013.

Nano Research
Pages 4917-4925
Cite this article:
Ruan L, Qin X, Lin K, et al. TiO2/Cu2O heterostructure enabling selective and uniform lithium deposition towards stable lithium metal anodes. Nano Research, 2023, 16(4): 4917-4925. https://doi.org/10.1007/s12274-022-5066-z
Topics:

5990

Views

9

Crossref

10

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 12 July 2022
Revised: 01 September 2022
Accepted: 18 September 2022
Published: 04 November 2022
© Tsinghua University Press 2022
Return