Graphical Abstract

The sufficient utilization of Mott–Schottky effect for boosting alkaline hydrogen evolution reaction (HER) depends upon scale minimizing of interface components and exposure maximizing of Mott–Schottky interface. Here, a self-standing porous tubular Mott–Schottky electrocatalyst is constructed by a self-template etching strategy, where amorphous WOx (a-WOx) nano-matrix connects Co nanoparticles. This novel “Janus” electrocatalyst maximizes the Mott–Schottky effect by not only providing a highly exposed micro interface, but also simultaneously accelerating the water dissociation and optimizing the hydrogen desorption process. Experimental findings and theoretical calculations reveal that Co/a-WOx Mott–Schottky heterointerface triggers the electron redistribution and a build-in electric field, which can not only optimize the adsorption energy of the reaction intermediates, but also facilitate the charge transfer. Thus, Co/a-WOx requires an overpotential of only 36.3 mV at 10 mA·cm−2 and shows a small Tafel slope of 53.9 mV·dec−1 as well as an excellent 200-h long-term stability. This work provides a novel design strategy for maximizing the Mott–Schottky effect on promoting alkaline HER.
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.
Gandía, L. M.; Oroz, R.; Ursúa, A.; Sanchis, P.; Diéguez, P. M. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions. Energy Fuels 2007, 21, 1699–1706.
Christopher, K.; Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energy Environ. Sci. 2012, 5, 6640–6651.
Funke, H.; Scheinost, A. C.; Chukalina, M. Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 2005, 71, 094110.
Li, Y. J.; Zhang, H. C.; Xu, T. H.; Lu, Z. Y.; Wu, X. C.; Wan, P. B.; Sun, X. M.; Jiang, L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1737–1744.
Bai, S.; Wang, C. M.; Deng, M. S.; Gong, M.; Bai, Y.; Jiang, J.; Xiong, Y. J. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew. Chem., Int. Ed. 2014, 53, 12120–12124.
Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.
Du, W.; Shi, Y. M.; Zhou, W.; Yu, Y. F.; Zhang, B. Unveiling the in situ dissolution and polymerization of Mo in Ni4Mo alloy for promoting the hydrogen evolution reaction. Angew. Chem. Int. Ed. 2021, 60, 7051–7055.
Li, G. W.; Sun, Y.; Rao, J. C.; Wu, J. Q.; Kumar, A.; Xu, Q. N.; Fu, C. G.; Liu, E. K.; Blake, G. R.; Werner, P. et al. Carbon-tailored semimetal MoP as an efficient hydrogen evolution electrocatalyst in both alkaline and acid media. Adv. Energy Mater. 2018, 8, 1801258.
Gong, Q. F.; Wang, Y.; Hu, Q.; Zhou, J. G.; Feng, R. F.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Li, Y. F. et al. Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nat. Commun. 2016, 7, 13216.
Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.
Manoharan, Y.; Hosseini, S. E.; Butler, B.; Alzhahrani, H.; Fou, B. T.; Ashuri, T.; Krohn, J. Hydrogen fuel cell vehicles; current status and future prospect. Appl. Sci. 2019, 9, 2296.
Li, D. Q.; Liao, Q. Y.; Ren, B. W.; Jin, Q. Y.; Cui, H.; Wang, C. X. A 3D-composite structure of FeP nanorods supported by vertically aligned graphene for the high-performance hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 11301–11308.
He, W. D.; Chen, J. P.; Zhang, Q. Y.; Cui, H.; Wang, C. X. Tuning charge distribution of Ru nanoparticles via coupling ammonium tungsten bronze as Pt-like electrocatalyst for hydrogen evolution reaction. Chem. Eng. J. 2022, 436, 135044.
Wang, H.; Min, S. X.; Wang, Q.; Li, D. B.; Casillas, G.; Ma, C.; Li, Y. Y.; Liu, Z. X.; Li, L. J.; Yuan, J. Y. et al. Nitrogen-doped nanoporous carbon membranes with Co/CoP Janus-type nanocrystals as hydrogen evolution electrode in both acidic and alkaline environments. ACS Nano 2017, 11, 4358–4364.
Zhang, L. L.; Lei, Y. T.; Zhou, D. N.; Xiong, C. L.; Jiang, Z. L.; Li, X. Y.; Shang, H. S.; Zhao, Y. F.; Chen, W. X.; Zhang, B. Interfacial engineering of 3D hollow CoSe2@ultrathin MoSe2 core@shell heterostructure for efficient pH-universal hydrogen evolution reaction. Nano Res. 2022, 15, 2895–2904.
Jiang, J. Z.; Bai, S. S.; Yang, M. Q.; Zou, J.; Li, N.; Peng, J. H.; Wang, H. T.; Xiang, K.; Liu, S.; Zhai, T. Y. Strategic design and fabrication of MXenes-Ti3CNCl2@CoS2 core–shell nanostructure for high-efficiency hydrogen evolution. Nano Res. 2022, 15, 5977–5986.
Zhang, H.; Wang, J.; Qin, F. Q.; Liu, H. L.; Wang, C. V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Res. 2021, 14, 3489–3496.
Biswas, A.; Nandi, S.; Kamboj, N.; Pan, J.; Bhowmik, A.; Dey, R. S. Alteration of electronic band structure via a metal–semiconductor interfacial effect enables high Faradaic efficiency for electrochemical nitrogen fixation. ACS Nano 2021, 15, 20364–20376.
Li, T. F.; Yin, J. W.; Sun, D. M.; Zhang, M. Y.; Pang, H.; Xu, L.; Zhang, Y. W.; Yang, J.; Tang, Y. W.; Xue, J. M. Manipulation of Mott–Schottky Ni/CeO2 heterojunctions into N-doped carbon nanofibers for high-efficiency electrochemical water splitting. Small 2022, 18, 2106592.
Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. Q. MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 496–500.
Sun, L. H.; Li, Q. Y.; Zhang, S. N.; Xu, D.; Xue, Z. H.; Su, H.; Lin, X.; Zhai, G. Y.; Gao, P.; Hirano, S. I. et al. Heterojunction-based electron donators to stabilize and activate ultrafine Pt nanoparticles for efficient hydrogen atom dissociation and gas evolution. Angew. Chem. Int. Ed. 2021, 60, 25766–25770.
Salah, A.; Ren, H. D.; Al-Ansi, N.; Yu, F. Y.; Lang, Z. L.; Tan, H. Q.; Li, Y. G. Ru/Mo2C@NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst. J. Mater. Chem. A 2021, 9, 20518–20529.
Su, J.; Li, G. D.; Li, X. H.; Chen, J. S. 2D/2D heterojunctions for catalysis. Adv. Sci. (Weinh.) 2019, 6, 1801702.
Zhang, Q.; Liu, B. Q.; Li, L.; Ji, Y.; Wang, C. G.; Zhang, L. Y.; Su, Z. M. Maximized Schottky effect: The ultrafine V2O3/Ni heterojunctions repeatedly arranging on monolayer nanosheets for efficient and stable water-to-hydrogen conversion. Small 2021, 17, 2005769.
Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.
Jin, Q. Y.; Ren, B. W.; Li, D. Q.; Cui, H.; Wang, C. X. In situ promoting water dissociation kinetic of Co based electrocatalyst for unprecedentedly enhanced hydrogen evolution reaction in alkaline media. Nano Energy 2018, 49, 14–22.
Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. J. Comput. Chem. 2008, 29, 2044–2078.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.
Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996, 14, 33–38.
Hsin, J.;Arkhipov, A.;Yin, Y.;Stone, J. E.; Schulten, K. Using VMD: An Introductory Tutorial. Current Protocols in Bioinformatics 2008, 24, 5.7.1–5.7.48.
Gao, L. N.; Wang, X. F.; Xie, Z.; Song, W. F.; Wang, L. J.; Wu, X.; Qu, F. Y.; Chen, D.; Shen, G. Z. High-performance energy-storage devices based on WO3 nanowire arrays/carbon cloth integrated electrodes. J. Mater. Chem. A 2013, 1, 7167–7173.
Laskowski, F. A. L.; Oener, S. Z.; Nellist, M. R.; Gordon, A. M.; Bain, D. C.; Fehrs, J. L.; Boettcher, S. W. Nanoscale semiconductor/catalyst interfaces in photoelectrochemistry. Nat. Mater. 2020, 19, 69–76.
Han, H.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N. et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443–2454.
Deng, K.; Zhou, T. Q.; Mao, Q. Q.; Wang, S. Q.; Wang, Z. Q.; Xu, Y.; Li, X. N.; Wang, H. J.; Wang, L. Surface engineering of defective and porous Ir metallene with polyallylamine for hydrogen evolution electrocatalysis. Adv. Mater. 2022, 34, 2110680.
Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.
Sim, H. Y. F.; Chen, J. R. T.; Koh, C. S. L.; Lee, H. K.; Han, X. M.; Phan-Quang, G. C.; Pang, J. Y.; Lay, C. L.; Pedireddy, S.; Phang, I. Y. et al. ZIF-induced d-band modification in a bimetallic nanocatalyst: Achieving over 44% efficiency in the ambient nitrogen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 16997–17003.
Chen, J. P.; Jin, Q. Y.; Li, Y. W.; Li, Y.; Cui, H.; Wang, C. X. Design superior alkaline hydrogen evolution electrocatalyst by engineering dual active sites for water dissociation and hydrogen desorption. ACS Appl. Mater. Interfaces 2019, 11, 38771–38778.
Zhuang, L. Z.; Ge, L.; Yang, Y. S.; Li, M. R.; Jia, Y.; Yao, X. D.; Zhu, Z. H. Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction. Adv. Mater. 2017, 29, 1606793.
Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.
Chotiwan, S.; Tomiga, H.; Yamashita, S.; Katayama, M.; Inada, Y. Time-resolved study on dynamic chemical state conversion of SiO2-supported Co species by means of dispersive XAFS technique. J. Phys. Conf. Ser. 2016, 712, 012061.
Haas, O.; Ludwig, C.; Bergmann, U.; Singh, R. N.; Braun, A.; Graule, T. X-ray absorption investigation of the valence state and electronic structure of La1−xCaxCoO3−δ in comparison with La1−xSrxCoO3−δ and La1−xSrxFeO3−δ. J. Solid State Chem. 2011, 184, 3163–3171.
Chen, J. M.; Lee, J. M.; Huang, S. W.; Lu, K. T.; Jeng, H. T.; Chen, C. K.; Haw, S. C.; Chou, T. L.; Chen, S. A.; Hiraoka, N. et al. Intra- and intersite electronic excitations in multiferroic TbMnO3 probed by resonant inelastic X-ray scattering. Phys. Rev. B 2010, 82, 094442.
Feng, Y.; Li, Z.; Cheng, C. Q.; Kang, W. J.; Mao, J.; Shen, G. R.; Yang, J.; Dong, C. K.; Liu, H.; Du, X. W. Strawberry-like Co3O4-Ag bifunctional catalyst for overall water splitting. Appl. Catal. B Environ. 2021, 299, 120658.
Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.
Chen, C. L.; Luo, W. J.; Li, H. J.; Hu, T.; Zhao, Y. Z.; Zhao, Z. P.; Sun, X. L.; Zai, H. C.; Qi, Y. F.; Wu, M. H. et al. Optimized MoP with pseudo-single-atom tungsten for efficient hydrogen electrocatalysis. Chem. Mater. 2021, 33, 3639–3649.
Xu, Z. X.; Jin, S.; Seo, M. H.; Wang, X. L. Hierarchical Ni-Mo2C/N-doped carbon Mott–Schottky array for water electrolysis. Appl. Catal. B Environ. 2021, 292, 120168.
Shinagawa, T.; Garcia-Esparza, A. T.; Takanabe, K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci. Rep. 2015, 5, 13801.
McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.
He, Y. M.; Liu, L. R.; Zhu, C.; Guo, S. S.; Golani, P.; Koo, B.; Tang, P. Y.; Zhao, Z. Q.; Xu, M. Z.; Zhu, C. et al. Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. Nat. Catal. 2022, 5, 212–221.